Difference between revisions of "2005 AMC 10A Problems/Problem 11"

(added problem and solution)
 
(Solution)
 
(9 intermediate revisions by 7 users not shown)
Line 2: Line 2:
 
A wooden cube <math>n</math> units on a side is painted red on all six faces and then cut into <math>n^3</math> unit cubes. Exactly one-fourth of the total number of faces of the unit cubes are red. What is <math>n</math>?
 
A wooden cube <math>n</math> units on a side is painted red on all six faces and then cut into <math>n^3</math> unit cubes. Exactly one-fourth of the total number of faces of the unit cubes are red. What is <math>n</math>?
  
<math> \mathrm{(A) \ } 3\qquad \mathrm{(B) \ } 4\qquad \mathrm{(C) \ } 5\qquad \mathrm{(D) \ } 6\qquad \mathrm{(E) \ } 7 </math>
+
<math> \textbf{(A) } 3\qquad \textbf{(B) } 4\qquad \textbf{(C) } 5\qquad \textbf{(D) } 6\qquad \textbf{(E) } 7 </math>
  
 
==Solution==
 
==Solution==
Since there are <math>n^2</math> faces on each face of the wooden cube, there are <math>6n^2</math> faces painted red.  
+
Since there are <math>n^2</math> little [[face]]s on each face of the big wooden [[cube (geometry) | cube]], there are <math>6n^2</math> little faces painted red.  
  
Since each unit cube has <math>6</math> faces, there are <math>6n^3</math> faces.  
+
Since each unit cube has <math>6</math> faces, there are <math>6n^3</math> little faces total.  
  
Since one-fourth of the faces are painted red,  
+
Since one-fourth of the little faces are painted red,  
  
 
<math>\frac{6n^2}{6n^3}=\frac{1}{4}</math>
 
<math>\frac{6n^2}{6n^3}=\frac{1}{4}</math>
Line 15: Line 15:
 
<math>\frac{1}{n}=\frac{1}{4}</math>
 
<math>\frac{1}{n}=\frac{1}{4}</math>
  
<math>n=4\Rightarrow B</math>
+
<math>n=\boxed{\textbf{(B) }4}</math>
  
==See Also==
+
==See also==
*[[2005 AMC 10A Problems]]
+
{{AMC10 box|year=2005|ab=A|num-b=10|num-a=12}}
  
*[[2005 AMC 10A Problems/Problem 10|Previous Problem]]
+
{{MAA Notice}}
 
 
*[[2005 AMC 10A Problems/Problem 12|Next Problem]]
 

Latest revision as of 11:40, 13 December 2021

Problem

A wooden cube $n$ units on a side is painted red on all six faces and then cut into $n^3$ unit cubes. Exactly one-fourth of the total number of faces of the unit cubes are red. What is $n$?

$\textbf{(A) } 3\qquad \textbf{(B) } 4\qquad \textbf{(C) } 5\qquad \textbf{(D) } 6\qquad \textbf{(E) } 7$

Solution

Since there are $n^2$ little faces on each face of the big wooden cube, there are $6n^2$ little faces painted red.

Since each unit cube has $6$ faces, there are $6n^3$ little faces total.

Since one-fourth of the little faces are painted red,

$\frac{6n^2}{6n^3}=\frac{1}{4}$

$\frac{1}{n}=\frac{1}{4}$

$n=\boxed{\textbf{(B) }4}$

See also

2005 AMC 10A (ProblemsAnswer KeyResources)
Preceded by
Problem 10
Followed by
Problem 12
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png