Difference between revisions of "2019 AIME II Problems/Problem 13"
(Created blank page) |
Brendanb4321 (talk | contribs) |
||
Line 1: | Line 1: | ||
+ | ==Problem== | ||
+ | Regular octagon <math>A_1A_2A_3A_4A_5A_6A_7A_8</math> is inscribed in a circle of area <math>1.</math> Point <math>P</math> lies inside the circle so that the region bounded by <math>\overline{PA_1},\overline{PA_2},</math> and the minor arc <math>\widehat{A_1A_2}</math> of the circle has area <math>\tfrac{1}{7},</math> while the region bounded by <math>\overline{PA_3},\overline{PA_4},</math> and the minor arc <math>\widehat{A_3A_4}</math> of the circle has area <math>\tfrac{1}{9}.</math> There is a positive integer <math>n</math> such that the area of the region bounded by <math>\overline{PA_6},\overline{PA_7},</math> and the minor arc <math>\widehat{A_6A_7}</math> of the circle is equal to <math>\tfrac{1}{8}-\tfrac{\sqrt2}{n}.</math> Find <math>n.</math> | ||
+ | ==Solution== | ||
+ | |||
+ | ==See Also== | ||
+ | {{AIME box|year=2019|n=II|num-b=12|num-a=14}} | ||
+ | {{MAA Notice}} |
Revision as of 17:13, 22 March 2019
Problem
Regular octagon is inscribed in a circle of area Point lies inside the circle so that the region bounded by and the minor arc of the circle has area while the region bounded by and the minor arc of the circle has area There is a positive integer such that the area of the region bounded by and the minor arc of the circle is equal to Find
Solution
See Also
2019 AIME II (Problems • Answer Key • Resources) | ||
Preceded by Problem 12 |
Followed by Problem 14 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.