Difference between revisions of "2005 AMC 10A Problems/Problem 2"

(See Also)
(See Also)
Line 11: Line 11:
 
<math> ((1 \star 2) \star 3) = \left(\left(\frac{1+2}{1-2}\right) \star 3\right) = (-3 \star 3) = \frac{-3+3}{-3-3} = 0 \Longrightarrow \mathrm{(C)}</math>
 
<math> ((1 \star 2) \star 3) = \left(\left(\frac{1+2}{1-2}\right) \star 3\right) = (-3 \star 3) = \frac{-3+3}{-3-3} = 0 \Longrightarrow \mathrm{(C)}</math>
  
==See Also==
+
==See also==
 +
{{AMC10 box|year=2005|ab=A|num-b=1|num-a=3}}
  
{{AMC10 box|year=2005|ab=A|before=Problem 1|num-a=3}}
+
[[Category:Introductory Number Theory Problems]]
 
 
[[Category:Introductory Algebra Problems]]
 
 
{{MAA Notice}}
 
{{MAA Notice}}

Revision as of 13:25, 13 August 2019

Problem

For each pair of real numbers $a \neq b$, define the operation $\star$ as

$(a \star b) = \frac{a+b}{a-b}$.

What is the value of $((1 \star 2) \star 3)$?

$\mathrm{(A) \ } -\frac{2}{3}\qquad \mathrm{(B) \ } -\frac{1}{5}\qquad \mathrm{(C) \ } 0\qquad \mathrm{(D) \ } \frac{1}{2}\qquad \mathrm{(E) \ } \textrm{This\, value\, is\, not\, defined.}$

Solution

$((1 \star 2) \star 3) = \left(\left(\frac{1+2}{1-2}\right) \star 3\right) = (-3 \star 3) = \frac{-3+3}{-3-3} = 0 \Longrightarrow \mathrm{(C)}$

See also

2005 AMC 10A (ProblemsAnswer KeyResources)
Preceded by
Problem 1
Followed by
Problem 3
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png