Difference between revisions of "2005 AMC 10A Problems/Problem 2"
(→See Also) |
(→Solution) |
||
Line 10: | Line 10: | ||
==Solution== | ==Solution== | ||
<math> ((1 \star 2) \star 3) = \left(\left(\frac{1+2}{1-2}\right) \star 3\right) = (-3 \star 3) = \frac{-3+3}{-3-3} = 0 \Longrightarrow \mathrm{(C)}</math> | <math> ((1 \star 2) \star 3) = \left(\left(\frac{1+2}{1-2}\right) \star 3\right) = (-3 \star 3) = \frac{-3+3}{-3-3} = 0 \Longrightarrow \mathrm{(C)}</math> | ||
+ | |||
+ | CHECK OUT Video Solution: https://youtu.be/5g_m3_nck8E | ||
==See also== | ==See also== |
Revision as of 19:34, 30 October 2020
Problem
For each pair of real numbers , define the operation as
.
What is the value of ?
Solution
CHECK OUT Video Solution: https://youtu.be/5g_m3_nck8E
See also
2005 AMC 10A (Problems • Answer Key • Resources) | ||
Preceded by Problem 1 |
Followed by Problem 3 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AMC 10 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.