Difference between revisions of "2020 AIME I Problems/Problem 13"
(→Solution 2(coordinate bash based)) |
(→Solution 1) |
||
Line 62: | Line 62: | ||
Points are defined as shown. It is pretty easy to show that <math>\triangle AFE \sim \triangle AGH</math> by spiral similarity at <math>A</math> by some short angle chasing. Now, note that <math>AD</math> is the altitude of <math>\triangle AFE</math>, as the altitude of <math>AGH</math>. We need to compare these altitudes in order to compare their areas. Note that Stewart's theorem implies that <math>AD/2 = \frac{\sqrt{18}}{2}</math>, the altitude of <math>\triangle AFE</math>. Similarly, the altitude of <math>\triangle AGH</math> is the altitude of <math>\triangle ABC</math>, or <math>\frac{12}{\sqrt{7}}</math>. However, it's not too hard to see that <math>GB = HC = 1</math>, and therefore <math>[AGH] = [ABC]</math>. From here, we get that the area of <math>\triangle ABC</math> is <math>\frac{15\sqrt{7}}{14} \implies \boxed{036}</math>, by similarity. ~awang11 | Points are defined as shown. It is pretty easy to show that <math>\triangle AFE \sim \triangle AGH</math> by spiral similarity at <math>A</math> by some short angle chasing. Now, note that <math>AD</math> is the altitude of <math>\triangle AFE</math>, as the altitude of <math>AGH</math>. We need to compare these altitudes in order to compare their areas. Note that Stewart's theorem implies that <math>AD/2 = \frac{\sqrt{18}}{2}</math>, the altitude of <math>\triangle AFE</math>. Similarly, the altitude of <math>\triangle AGH</math> is the altitude of <math>\triangle ABC</math>, or <math>\frac{12}{\sqrt{7}}</math>. However, it's not too hard to see that <math>GB = HC = 1</math>, and therefore <math>[AGH] = [ABC]</math>. From here, we get that the area of <math>\triangle ABC</math> is <math>\frac{15\sqrt{7}}{14} \implies \boxed{036}</math>, by similarity. ~awang11 | ||
+ | |||
+ | ==Solution 2== | ||
+ | Let <math>\overline{BC}</math> lie on the x-axis and <math>B</math> be the origin. <math>C</math> is <math>(5,0)</math>. Use Heron's formula to compute the area of triangle <math>ABC</math>. We have <math>s=\frac{15}{2}</math>. and <math>[ABC]=\sqrt{\frac{15 \cdot 7 \cdot 5 \cdot 3}{2^4}}=\frac{15\sqrt{7}}{4}</math>. We now find the altitude, which is <math>\frac{\frac{15\sqrt{7}}{2}}{5}=3\sqrt{7}{2}</math>, which is the y-coordinate of <math>A</math>. We now find the x-coordinate of <math>A</math>, which satisfies <math>x^2 + (3\sqrt{7}{2})^2=16</math>, which gives <math>x=\frac{1}{2}</math> since the triangle is acute. Now using the Angle Bisector Theorem, we have <math>\frac{4}{6}=\frac{BD}{CD}</math> and <math>BD+CD=5</math> to get <math>BD=2</math>. The coordinates of D are <math>(2,0)</math>. | ||
+ | Since we want the area of triangle <math>AEF</math>, we will find equations for perpendicular bisector of AD, and the other two angle bisectors. The perpendicular bisector is not too challenging: the midpoint of AD is <math>(\frac{5}{4}, \frac{3\sqrt{7}}{4})</math> and the slope of AD is <math>-\sqrt{7}</math>. The slope of the perpendicular bisector is <math>\frac{1}{\sqrt{7}}</math>. The equation is(in point slope form) <math>y-\frac{3\sqrt{7}}{4}=\frac{1}{\sqrt{7}}(x-\frac{5}{4})</math>. | ||
+ | The slope of AB, or in trig words, the tangent of <math>\angle ABC</math> is <math>3\sqrt{7}</math>. | ||
+ | Finding <math>\sin{\angle ABC}=\frac{\frac{3\sqrt{7}}{2}}{4}=\frac{3\sqrt{7}}{8}</math> and <math>\cos{\angle ABC}=\frac{\frac{1}{2}}{4}=\frac{1}{8}</math>. Plugging this in to half angle tangent, it gives <math>\frac{\frac{3\sqrt{7}}{8}}{1+\frac{1}{8}}=\frac{\sqrt{7}}{3}</math> as the slope of the angle bisector, since it passes through <math>B</math>, the equation is <math>y=\frac{\sqrt{7}}{3}x</math>. | ||
+ | Similarly, the equation for the angle bisector of <math>C</math> will be $y=-\frac{1}{\sqrt{7}}(x-5). | ||
==See Also== | ==See Also== |
Revision as of 16:58, 12 March 2020
Contents
Problem
Point lies on side of so that bisects The perpendicular bisector of intersects the bisectors of and in points and respectively. Given that and the area of can be written as where and are relatively prime positive integers, and is a positive integer not divisible by the square of any prime. Find
Solution 1
Points are defined as shown. It is pretty easy to show that by spiral similarity at by some short angle chasing. Now, note that is the altitude of , as the altitude of . We need to compare these altitudes in order to compare their areas. Note that Stewart's theorem implies that , the altitude of . Similarly, the altitude of is the altitude of , or . However, it's not too hard to see that , and therefore . From here, we get that the area of is , by similarity. ~awang11
Solution 2
Let lie on the x-axis and be the origin. is . Use Heron's formula to compute the area of triangle . We have . and . We now find the altitude, which is , which is the y-coordinate of . We now find the x-coordinate of , which satisfies , which gives since the triangle is acute. Now using the Angle Bisector Theorem, we have and to get . The coordinates of D are . Since we want the area of triangle , we will find equations for perpendicular bisector of AD, and the other two angle bisectors. The perpendicular bisector is not too challenging: the midpoint of AD is and the slope of AD is . The slope of the perpendicular bisector is . The equation is(in point slope form) . The slope of AB, or in trig words, the tangent of is . Finding and . Plugging this in to half angle tangent, it gives as the slope of the angle bisector, since it passes through , the equation is . Similarly, the equation for the angle bisector of will be $y=-\frac{1}{\sqrt{7}}(x-5).
See Also
2020 AIME I (Problems • Answer Key • Resources) | ||
Preceded by Problem 12 |
Followed by Problem 14 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.