Difference between revisions of "2013 AIME II Problems/Problem 10"
(Tag: Undo) |
(Tag: Undo) |
||
Line 1: | Line 1: | ||
==Problem 10== | ==Problem 10== | ||
Given a circle of radius <math>\sqrt{13}</math>, let <math>A</math> be a point at a distance <math>4 + \sqrt{13}</math> from the center <math>O</math> of the circle. Let <math>B</math> be the point on the circle nearest to point <math>A</math>. A line passing through the point <math>A</math> intersects the circle at points <math>K</math> and <math>L</math>. The maximum possible area for <math>\triangle BKL</math> can be written in the form <math>\frac{a - b\sqrt{c}}{d}</math>, where <math>a</math>, <math>b</math>, <math>c</math>, and <math>d</math> are positive integers, <math>a</math> and <math>d</math> are relatively prime, and <math>c</math> is not divisible by the square of any prime. Find <math>a+b+c+d</math>. | Given a circle of radius <math>\sqrt{13}</math>, let <math>A</math> be a point at a distance <math>4 + \sqrt{13}</math> from the center <math>O</math> of the circle. Let <math>B</math> be the point on the circle nearest to point <math>A</math>. A line passing through the point <math>A</math> intersects the circle at points <math>K</math> and <math>L</math>. The maximum possible area for <math>\triangle BKL</math> can be written in the form <math>\frac{a - b\sqrt{c}}{d}</math>, where <math>a</math>, <math>b</math>, <math>c</math>, and <math>d</math> are positive integers, <math>a</math> and <math>d</math> are relatively prime, and <math>c</math> is not divisible by the square of any prime. Find <math>a+b+c+d</math>. | ||
+ | |||
+ | ==Solution 1== | ||
+ | <asy> | ||
+ | import math; | ||
+ | import olympiad; | ||
+ | import graph; | ||
+ | pair A, B, K, L; | ||
+ | B = (sqrt(13), 0); A=(4+sqrt(13), 0); | ||
+ | dot(B); | ||
+ | dot(A); | ||
+ | |||
+ | draw(Circle((0,0), sqrt(13))); | ||
+ | label("$O$", (0,0), S);label("$B$", B, SW);label("$A$", A, S); | ||
+ | dot((0,0)); | ||
+ | |||
+ | |||
+ | |||
+ | </asy> | ||
+ | |||
+ | |||
+ | Now we put the figure in the Cartesian plane, let the center of the circle <math>O (0,0)</math>, then <math>B (\sqrt{13},0)</math>, and <math>A(4+\sqrt{13},0)</math> | ||
+ | |||
+ | The equation for Circle O is <math>x^2+y^2=13</math>, and let the slope of the line<math>AKL</math> be <math>k</math>, then the equation for line<math>AKL</math> is <math>y=k(x-4-\sqrt{13})</math>. | ||
+ | |||
+ | Then we get <math>(k^2+1)x^2-2k^2(4+\sqrt{13})x+k^2\cdot (4+\sqrt{13})^2-13=0</math>. According to [[Vieta's Formulas]], we get | ||
+ | |||
+ | <math>x_1+x_2=\frac{2k^2(4+\sqrt{13})}{k^2+1}</math>, and <math>x_1x_2=\frac{(4+\sqrt{13})^2\cdot k^2-13}{k^2+1}</math> | ||
+ | |||
+ | So, <math>LK=\sqrt{1+k^2}\cdot \sqrt{(x_1+x_2)^2-4x_1x_2}</math> | ||
+ | |||
+ | Also, the distance between <math>B</math> and <math>LK</math> is <math>\frac{k\times \sqrt{13}-(4+\sqrt{13})\cdot k}{\sqrt{1+k^2}}=\frac{-4k}{\sqrt{1+k^2}}</math> | ||
+ | |||
+ | So the area <math>S=0.5ah=\frac{-4k\sqrt{(16-8\sqrt{13})k^2-13}}{k^2+1}</math> | ||
+ | |||
+ | Then the maximum value of <math>S</math> is <math>\frac{104-26\sqrt{13}}{3}</math> | ||
+ | |||
+ | So the answer is <math>104+26+13+3=\boxed{146}</math>. | ||
==Solution 2== | ==Solution 2== |
Revision as of 20:01, 4 June 2020
Contents
Problem 10
Given a circle of radius , let be a point at a distance from the center of the circle. Let be the point on the circle nearest to point . A line passing through the point intersects the circle at points and . The maximum possible area for can be written in the form , where , , , and are positive integers, and are relatively prime, and is not divisible by the square of any prime. Find .
Solution 1
Now we put the figure in the Cartesian plane, let the center of the circle , then , and
The equation for Circle O is , and let the slope of the line be , then the equation for line is .
Then we get . According to Vieta's Formulas, we get
, and
So,
Also, the distance between and is
So the area
Then the maximum value of is
So the answer is .
Solution 2
Draw perpendicular to at . Draw perpendicular to at .
Therefore, to maximize area of , we need to maximize area of .
So when area of is maximized, .
Eventually, we get
So the answer is .
See Also
http://girlsangle.wordpress.com/2013/11/26/2013-aime-2-problem-10/
2013 AIME II (Problems • Answer Key • Resources) | ||
Preceded by Problem 9 |
Followed by Problem 11 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.