Difference between revisions of "2006 AIME I Problems/Problem 7"
(→Solution) |
m (→Solution) |
||
Line 16: | Line 16: | ||
</math> | </math> | ||
− | Solve this to find that <math> | + | Solve this to find that <math>s = \frac{5}{6}</math>. |
By a similar method, <math>\frac{Region \mathcal{D}}{Region \mathcal{A}} = \frac{\frac 12(7-s)^2 - \frac 12(6-s)^2}{\frac 12(1-s)^2}</math> is <math>408</math>. | By a similar method, <math>\frac{Region \mathcal{D}}{Region \mathcal{A}} = \frac{\frac 12(7-s)^2 - \frac 12(6-s)^2}{\frac 12(1-s)^2}</math> is <math>408</math>. |
Revision as of 20:35, 11 March 2007
Problem
An angle is drawn on a set of equally spaced parallel lines as shown. The ratio of the area of shaded region to the area of shaded region is 11/5. Find the ratio of shaded region to the area of shaded region
Solution
Note that the apex of the angle is not on the parallel lines. Set up a coordinate proof.
Let the set of parallel lines be perpendicular to the x-axis, such that they cross it at . The base of region is on the line . The bigger base of region is on the line . The bottom side of the angle will be x-axis; the top side will be .
Since the area of the triangle is equal to ,
Solve this to find that .
By a similar method, is .
See also
2006 AIME I (Problems • Answer Key • Resources) | ||
Preceded by Problem 6 |
Followed by Problem 8 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |