Difference between revisions of "1991 AIME Problems/Problem 15"

(Solution)
(Solution)
Line 5: Line 5:
  
 
== Solution ==
 
== Solution ==
We start by recalling the following simple inequality: Let <math>a_{}^{}</math> and <math>b_{}^{}</math> denote two positive real numbers, then <math>\sqrt{a_{}^{2}+b_{}^{2}}\geq (a+b)/\sqrt{2}</math>, with equality if and only if <math>a_{}^{}=b_{}^{}</math>. Applying this inequality to the given sum, one has
+
We start by recalling the following simple inequality: Let <math>a_{}^{}</math> and <math>b_{}^{}</math> denote two real numbers, then <math>\sqrt{a_{}^{2}+b_{}^{2}}\geq (a+b)/\sqrt{2}</math>, with equality if and only if <math>a_{}^{}=b_{}^{}</math>. Applying this inequality to the given sum, one has
  
 
<math>
 
<math>
 
\sum_{k=1}^{n}\sqrt{(2k-1)^{2}+a_{k}^{2}}\geq \frac{1}{\sqrt{2}}\sum_{k=1}^{n}[(2k-1)+a_{k}]=\frac{n^{2}+t}{\sqrt{2}}\, ,
 
\sum_{k=1}^{n}\sqrt{(2k-1)^{2}+a_{k}^{2}}\geq \frac{1}{\sqrt{2}}\sum_{k=1}^{n}[(2k-1)+a_{k}]=\frac{n^{2}+t}{\sqrt{2}}\, ,
 
</math>
 
</math>
where we have used the well-known fact that <math>\sum_{k=1}^{n}(2k-1)=n^{2}</math>, and we have defined <math>t=\sum_{k=1}^{n}a_{k}</math>.
+
 
 +
where we have used the well-known fact that <math>\sum_{k=1}^{n}(2k-1)=n^{2}</math>, and we have defined <math>t=\sum_{k=1}^{n}a_{k}</math>. Therefore, <math>S_{n}\geq(n^{2}+t)/\sqrt{2}</math>.
  
 
== See also ==
 
== See also ==
 
{{AIME box|year=1991|num-b=14|after=Last question}}
 
{{AIME box|year=1991|num-b=14|after=Last question}}

Revision as of 17:49, 19 April 2007

Problem

For positive integer $n_{}^{}$, define $S_n^{}$ to be the minimum value of the sum $\sum_{k=1}^n \sqrt{(2k-1)^2+a_k^2},$ where $a_1,a_2,\ldots,a_n^{}$ are positive real numbers whose sum is 17. There is a unique positive integer $n^{}_{}$ for which $S_n^{}$ is also an integer. Find this $n^{}_{}$.

Solution

We start by recalling the following simple inequality: Let $a_{}^{}$ and $b_{}^{}$ denote two real numbers, then $\sqrt{a_{}^{2}+b_{}^{2}}\geq (a+b)/\sqrt{2}$, with equality if and only if $a_{}^{}=b_{}^{}$. Applying this inequality to the given sum, one has

$\sum_{k=1}^{n}\sqrt{(2k-1)^{2}+a_{k}^{2}}\geq \frac{1}{\sqrt{2}}\sum_{k=1}^{n}[(2k-1)+a_{k}]=\frac{n^{2}+t}{\sqrt{2}}\, ,$

where we have used the well-known fact that $\sum_{k=1}^{n}(2k-1)=n^{2}$, and we have defined $t=\sum_{k=1}^{n}a_{k}$. Therefore, $S_{n}\geq(n^{2}+t)/\sqrt{2}$.

See also

1991 AIME (ProblemsAnswer KeyResources)
Preceded by
Problem 14
Followed by
Last question
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
All AIME Problems and Solutions