Difference between revisions of "1985 AIME Problems/Problem 10"
I_like_pie (talk | contribs) (→See also) |
(→Solution: reduce by 1/2) |
||
Line 5: | Line 5: | ||
where <math>x</math> is a [[real number]], and <math>\lfloor z \rfloor</math> denotes the greatest [[integer]] less than or equal to <math>z</math>? | where <math>x</math> is a [[real number]], and <math>\lfloor z \rfloor</math> denotes the greatest [[integer]] less than or equal to <math>z</math>? | ||
+ | __TOC__ | ||
== Solution == | == Solution == | ||
− | We will be able to reach the same number of integers while <math>x</math> ranges from 0 to 1 as we will when <math>x</math> ranges from <math>n</math> to <math>n + 1</math> for any integer <math>n</math>. | + | We will be able to reach the same number of integers while <math>x</math> ranges from 0 to 1 as we will when <math>x</math> ranges from <math>n</math> to <math>n + 1</math> for any [[integer]] <math>n</math> (Quick proof: <math>\lfloor 2(n+x)\rfloor + \ldots = \lfloor 2n + 2x\rfloor + \ldots = 2n + \lfloor 2x\rfloor \ldots</math>). Since <math>\lfloor 2\cdot50 \rfloor + \lfloor 4\cdot50 \rfloor + \lfloor 6\cdot50 \rfloor + \lfloor 8\cdot50 \rfloor = 100 + 200 + 300 + 400</math>, the answer must be exactly 50 times the number of integers we will be able to reach as <math>x</math> ranges from 0 to 1, including 1 but excluding 0. |
+ | === Solution 1 === | ||
+ | Noting that all of the numbers are even, we can reduce this to any real number <math>x</math> between <math>0</math> to <math>\frac 12</math>, as this will be equivalent to <math>\displaystyle \frac n2</math> to <math>\frac {n+1}2</math> for any integer <math>n</math> (same reasoning as above). So now we only need to test every 10 numbers; and our answer will be 100 times the number of integers we can reach between 1 and 10. | ||
+ | |||
+ | We can now approach this by directly searching for the integers (this solution) or brute forcing all of the cases (next solution): | ||
+ | |||
+ | We can match up the greatest integer functions with one of the partitions of the integer. If we let <math>x = \frac 12</math> then we get the solution <math>10</math>; now consider when <math>x < \frac 12</math>: <math>\lfloor 2x \rfloor = 0</math>, <math>\lfloor 4x \rfloor \le 1</math>, <math>\lfloor 6x \rfloor \le 2</math>, <math>\displaystyle \lfloor 8x \rfloor \le 3</math>. But according to this the maximum we can get is <math>1+2+3 = 6</math>, so we only need to try the first 6 numbers. | ||
+ | |||
+ | *<math>1</math>: Easily possible, for example try plugging in <math>x = \displaystyle \frac 18</math>. | ||
+ | *<math>2</math>: Also simple, for example using <math>\displaystyle \frac 16</math>. | ||
+ | *<math>3</math>: The partition must either be <math>1+1+1</math> or <math>1+2</math>. If <math>\lfloor 4x \rfloor = 1</math>, then <math>x \ge \frac 14</math>, but then <math>\lfloor 8x \rfloor \ge 2</math>; not possible; and vice versa to show that the latter partition doesn't work. So we cannot obtain <math>3</math>. | ||
+ | *<math>4</math>: We can partition as <math>1+1+2</math>, and from the previous case we see that <math>\frac 14</math> works. | ||
+ | *<math>5</math>: We can partition as <math>1+2+2</math>, from which we find that <math>\frac 13</math> works. | ||
+ | *<math>6</math>: We can partition as <math>1+2+3</math>, from which we find that <math>\frac 38</math> works. | ||
+ | |||
+ | Out of these 6 cases, only 3 fails. So between 1 and 10 we can reach only the integers <math>1,2,4,5,6,10</math>; hence our solution is <math>6 \cdot 100 = 600</math>. | ||
+ | |||
+ | === Solution 2 === | ||
As we change the value of <math>x</math>, the value of our [[expression]] changes only when <math>x</math> crosses [[rational number]] of the form <math>\frac{m}{n}</math>, where <math>n</math> is divisible by 2, 4, 6 or 8. Thus, we need only see what happens at the numbers of the form <math>\frac{m}{\textrm{gcd}(2, 4, 6, 8)} = \frac{m}{24}</math>. This gives us 24 calculations to make; we summarize the results here: | As we change the value of <math>x</math>, the value of our [[expression]] changes only when <math>x</math> crosses [[rational number]] of the form <math>\frac{m}{n}</math>, where <math>n</math> is divisible by 2, 4, 6 or 8. Thus, we need only see what happens at the numbers of the form <math>\frac{m}{\textrm{gcd}(2, 4, 6, 8)} = \frac{m}{24}</math>. This gives us 24 calculations to make; we summarize the results here: | ||
Line 36: | Line 54: | ||
<math>\frac{24}{24} \to 20</math> | <math>\frac{24}{24} \to 20</math> | ||
− | Thus, we hit 12 of the first 20 integers and so we hit <math>50 \cdot 12 = 600</math> of the first | + | Thus, we hit 12 of the first 20 integers and so we hit <math>50 \cdot 12 = 600</math> of the first 1000. |
== See also == | == See also == |
Revision as of 17:08, 11 September 2007
Problem
How many of the first 1000 positive integers can be expressed in the form
,
where is a real number, and denotes the greatest integer less than or equal to ?
Solution
We will be able to reach the same number of integers while ranges from 0 to 1 as we will when ranges from to for any integer (Quick proof: ). Since , the answer must be exactly 50 times the number of integers we will be able to reach as ranges from 0 to 1, including 1 but excluding 0.
Solution 1
Noting that all of the numbers are even, we can reduce this to any real number between to , as this will be equivalent to to for any integer (same reasoning as above). So now we only need to test every 10 numbers; and our answer will be 100 times the number of integers we can reach between 1 and 10.
We can now approach this by directly searching for the integers (this solution) or brute forcing all of the cases (next solution):
We can match up the greatest integer functions with one of the partitions of the integer. If we let then we get the solution ; now consider when : , , , . But according to this the maximum we can get is , so we only need to try the first 6 numbers.
- : Easily possible, for example try plugging in .
- : Also simple, for example using .
- : The partition must either be or . If , then , but then ; not possible; and vice versa to show that the latter partition doesn't work. So we cannot obtain .
- : We can partition as , and from the previous case we see that works.
- : We can partition as , from which we find that works.
- : We can partition as , from which we find that works.
Out of these 6 cases, only 3 fails. So between 1 and 10 we can reach only the integers ; hence our solution is .
Solution 2
As we change the value of , the value of our expression changes only when crosses rational number of the form , where is divisible by 2, 4, 6 or 8. Thus, we need only see what happens at the numbers of the form . This gives us 24 calculations to make; we summarize the results here:
Thus, we hit 12 of the first 20 integers and so we hit of the first 1000.
See also
1985 AIME (Problems • Answer Key • Resources) | ||
Preceded by Problem 9 |
Followed by Problem 11 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |