Difference between revisions of "2021 AIME II Problems/Problem 14"
MRENTHUSIASM (talk | contribs) m (→Solution 2) |
MRENTHUSIASM (talk | contribs) m (→Solution 2) |
||
Line 32: | Line 32: | ||
Substituting back gives <math>17k=2(2k)+\angle BAC,</math> from which <math>\angle BAC=13k.</math> | Substituting back gives <math>17k=2(2k)+\angle BAC,</math> from which <math>\angle BAC=13k.</math> | ||
− | For the sum of the interior angles | + | For the sum of the interior angles of <math>\triangle ABC,</math> we get |
<cmath>\begin{align*} | <cmath>\begin{align*} | ||
\angle ABC + \angle BCA + \angle BAC &= 180 \\ | \angle ABC + \angle BCA + \angle BAC &= 180 \\ |
Revision as of 14:41, 1 June 2021
Contents
Problem
Let be an acute triangle with circumcenter and centroid . Let be the intersection of the line tangent to the circumcircle of at and the line perpendicular to at . Let be the intersection of lines and . Given that the measures of and are in the ratio the degree measure of can be written as where and are relatively prime positive integers. Find .
Diagram
~MRENTHUSIASM (by Geometry Expressions)
Solution 1
Let be the midpoint of . Because , and are cyclic, so is the center of the spiral similarity sending to , and . Because , it's easy to get from here.
~Lcz
Solution 2
In this solution, all angle measures are in degrees.
Let be the midpoint of so that and are collinear. Let and
We note that:
- Since quadrilateral is cyclic by the Converse of the Inscribed Angle Theorem.
It follows that as they share the same intercepted arc
- Since quadrilateral is cyclic by the supplementary opposite angles.
It follows that as they share the same intercepted arc
Together, we conclude that by AA, so
Next, we express in terms of By angle addition, we have Substituting back gives from which
For the sum of the interior angles of we get Finally, we obtain from which the answer is
~Constance-variance (Fundamental Logic)
~MRENTHUSIASM (Reformatting)
Solution 3 (Guessing in the Last 3 Minutes, Unreliable)
Notice that looks isosceles, so we assume it's isosceles. Then, let and Taking the sum of the angles in the triangle gives so so the answer is
Video Solution 1
https://www.youtube.com/watch?v=zFH1Z7Ydq1s
Video Solution 2
https://www.youtube.com/watch?v=7Bxr2h4btWo
~Osman Nal
See also
2021 AIME II (Problems • Answer Key • Resources) | ||
Preceded by Problem 13 |
Followed by Problem 15 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.