Difference between revisions of "2017 AMC 8 Problems/Problem 15"
Hashtagmath (talk | contribs) (→Solution 1) |
Vinayreddy (talk | contribs) m (→Solution 1) |
||
Line 6: | Line 6: | ||
<math>\textbf{(A) }8\qquad\textbf{(B) }9\qquad\textbf{(C) }12\qquad\textbf{(D) }24\qquad\textbf{(E) }36</math> | <math>\textbf{(A) }8\qquad\textbf{(B) }9\qquad\textbf{(C) }12\qquad\textbf{(D) }24\qquad\textbf{(E) }36</math> | ||
− | ==Solution 1== | + | ==Solution 1 (Not Very Good)== |
Notice that the upper-most section contains a 3 by 3 square that looks like: | Notice that the upper-most section contains a 3 by 3 square that looks like: | ||
Revision as of 07:53, 10 January 2022
Contents
Problem
In the arrangement of letters and numerals below, by how many different paths can one spell AMC8? Beginning at the A in the middle, a path only allows moves from one letter to an adjacent (above, below, left, or right, but not diagonal) letter. One example of such a path is traced in the picture.
Solution 1 (Not Very Good)
Notice that the upper-most section contains a 3 by 3 square that looks like:
It has 6 paths in which you can spell out AMC8. You will find four identical copies of this square in the figure, so multiply to get total paths.
Solution 2
There are three different kinds of paths that are on this diagram. The first kind is when you directly count , , in a straight line. The second is when you count , turn left or right to get , then go up or down to count and . The third is the one where you start with , move up or down to count , turn left or right to count , then move straight again to get .
There are 8 paths for each kind of path, making for paths.
Solution 3
Notice that the is adjacent to s, each is adjacent to s, and each is adjacent to 's. Thus, the answer is
Video Solution
See Also
2017 AMC 8 (Problems • Answer Key • Resources) | ||
Preceded by Problem 14 |
Followed by Problem 16 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AJHSME/AMC 8 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.