Difference between revisions of "2022 AIME II Problems/Problem 5"
m (→Solution 1) |
m (→Solution 1) |
||
Line 3: | Line 3: | ||
Twenty distinct points are marked on a circle and labeled <math>1</math> through <math>20</math> in clockwise order. A line segment is drawn between every pair of points whose labels differ by a prime number. Find the number of triangles formed whose vertices are among the original <math>20</math> points. | Twenty distinct points are marked on a circle and labeled <math>1</math> through <math>20</math> in clockwise order. A line segment is drawn between every pair of points whose labels differ by a prime number. Find the number of triangles formed whose vertices are among the original <math>20</math> points. | ||
− | ==Solution | + | ==Solution== |
Let <math>a</math>, <math>b</math>, and <math>c</math> be the vertex of a triangle that satisfies this problem, where <math>a > b > c</math>. | Let <math>a</math>, <math>b</math>, and <math>c</math> be the vertex of a triangle that satisfies this problem, where <math>a > b > c</math>. |
Revision as of 01:14, 13 June 2022
Problem
Twenty distinct points are marked on a circle and labeled through in clockwise order. A line segment is drawn between every pair of points whose labels differ by a prime number. Find the number of triangles formed whose vertices are among the original points.
Solution
Let , , and be the vertex of a triangle that satisfies this problem, where .
. Because is the sum of two primes, and , or must be . Let , then . There are only primes less than : . Only plus equals another prime. .
Once is determined, and . There are values of where , and values of . Therefore the answer is
See Also
2022 AIME II (Problems • Answer Key • Resources) | ||
Preceded by Problem 4 |
Followed by Problem 6 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.