Difference between revisions of "2021 Fall AMC 12A Problems/Problem 6"

m
Line 28: Line 28:
 
<math>\textbf{(A) }160\qquad\textbf{(B) }164\qquad\textbf{(C) }166\qquad\textbf{(D) }170\qquad\textbf{(E) }174</math>
 
<math>\textbf{(A) }160\qquad\textbf{(B) }164\qquad\textbf{(C) }166\qquad\textbf{(D) }170\qquad\textbf{(E) }174</math>
  
==Solution==
+
==Solution 1==
 
By angle subtraction, we have <math>\angle ADE = 360^\circ - \angle ADC - \angle CDE = 160^\circ.</math> Note that <math>\triangle DEF</math> is isosceles, so <math>\angle DFE = \frac{180^\circ - \angle ADE}{2}=10^\circ.</math> Finally, we get <math>\angle AFE = 180^\circ - \angle DFE = \boxed{\textbf{(D) }170}</math> degrees.
 
By angle subtraction, we have <math>\angle ADE = 360^\circ - \angle ADC - \angle CDE = 160^\circ.</math> Note that <math>\triangle DEF</math> is isosceles, so <math>\angle DFE = \frac{180^\circ - \angle ADE}{2}=10^\circ.</math> Finally, we get <math>\angle AFE = 180^\circ - \angle DFE = \boxed{\textbf{(D) }170}</math> degrees.
  
 
~MRENTHUSIASM ~[[User:Aops-g5-gethsemanea2|Aops-g5-gethsemanea2]]
 
~MRENTHUSIASM ~[[User:Aops-g5-gethsemanea2|Aops-g5-gethsemanea2]]
 +
 +
==Solution 2 ==
 +
If we extend <math>\overline{AD}</math> to a new point G, so that <math>\angle CDG</math> = 90^\circ<math>. We find </math>\angle GDE = 110-90= 20^\circ<math>.
 +
 +
Since </math>\triangle FDE<math> is isosceles, </math>\angle DEF = \angle DFE = 20 \div 2 = 10^\circ. Hence, <math>\angle DFE = 180-10= \boxed{\textbf{(D) }170}</math> degrees.
 +
 +
~MrThinker
  
 
==Video Solution by TheBeautyofMath==
 
==Video Solution by TheBeautyofMath==

Revision as of 14:45, 9 August 2022

The following problem is from both the 2021 Fall AMC 10A #7 and 2021 Fall AMC 12A #6, so both problems redirect to this page.

Problem

As shown in the figure below, point $E$ lies on the opposite half-plane determined by line $CD$ from point $A$ so that $\angle CDE = 110^\circ$. Point $F$ lies on $\overline{AD}$ so that $DE=DF$, and $ABCD$ is a square. What is the degree measure of $\angle AFE$?

[asy] size(6cm); pair A = (0,10); label("$A$", A, N); pair B = (0,0); label("$B$", B, S); pair C = (10,0); label("$C$", C, S); pair D = (10,10); label("$D$", D, SW); pair EE = (15,11.8); label("$E$", EE, N); pair F = (3,10); label("$F$", F, N); filldraw(D--arc(D,2.5,270,380)--cycle,lightgray); dot(A^^B^^C^^D^^EE^^F); draw(A--B--C--D--cycle); draw(D--EE--F--cycle); label("$110^\circ$", (15,9), SW); [/asy]

$\textbf{(A) }160\qquad\textbf{(B) }164\qquad\textbf{(C) }166\qquad\textbf{(D) }170\qquad\textbf{(E) }174$

Solution 1

By angle subtraction, we have $\angle ADE = 360^\circ - \angle ADC - \angle CDE = 160^\circ.$ Note that $\triangle DEF$ is isosceles, so $\angle DFE = \frac{180^\circ - \angle ADE}{2}=10^\circ.$ Finally, we get $\angle AFE = 180^\circ - \angle DFE = \boxed{\textbf{(D) }170}$ degrees.

~MRENTHUSIASM ~Aops-g5-gethsemanea2

Solution 2

If we extend $\overline{AD}$ to a new point G, so that $\angle CDG$ = 90^\circ$. We find$\angle GDE = 110-90= 20^\circ$.

Since$ (Error compiling LaTeX. Unknown error_msg)\triangle FDE$is isosceles,$\angle DEF = \angle DFE = 20 \div 2 = 10^\circ. Hence, $\angle DFE = 180-10= \boxed{\textbf{(D) }170}$ degrees.

~MrThinker

Video Solution by TheBeautyofMath

for AMC 10: https://youtu.be/ycRZHCOKTVk?t=232

for AMC 12: https://youtu.be/wlDlByKI7A8

~IceMatrix

Video Solution by WhyMath

https://youtu.be/9nUZhyhi9_o

~savannahsolver

Video Solution by HS Competition Academy

https://youtu.be/l3nnd-eWOI0

~Charles3829

See Also

2021 Fall AMC 12A (ProblemsAnswer KeyResources)
Preceded by
Problem 5
Followed by
Problem 7
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions
2021 Fall AMC 10A (ProblemsAnswer KeyResources)
Preceded by
Problem 6
Followed by
Problem 8
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png