Difference between revisions of "2019 AIME II Problems/Problem 7"
(→Solution 3) |
(→Diagram: ; renamed and labeled points) |
||
Line 7: | Line 7: | ||
size(350); | size(350); | ||
− | pair A, B, C, D, | + | pair A, B, C, D, e, F, G, H, I, X, Y, Z; |
B = origin; | B = origin; | ||
C = (220,0); | C = (220,0); | ||
A = intersectionpoints(Circle(B,120),Circle(C,180))[0]; | A = intersectionpoints(Circle(B,120),Circle(C,180))[0]; | ||
− | D = | + | D = B+1/4*(C-B); |
− | + | e = C+1/8*(B-C); | |
− | F = | + | F = C+1/8*(A-C); |
− | G = | + | G = A+1/4*(C-A); |
− | H = | + | H = A+1/4*(B-A); |
− | I = | + | I = B+1/4*(A-B); |
− | + | X = extension(I,D,F,e); | |
− | + | Y = extension(e,F,H,G); | |
− | + | Z = extension(G,H,D,I); | |
draw(A--B--C--cycle); | draw(A--B--C--cycle); | ||
− | draw( | + | draw(X+9/8*(Y-X)--Y+9/8*(X-Y),dashed); |
− | draw( | + | draw(Z+9/8*(Y-Z)--Y+9/8*(Z-Y),dashed); |
− | draw( | + | draw(X+9/8*(Z-X)--Z+9/8*(X-Z),dashed); |
− | draw( | + | draw(H--G^^e--F^^I--D,red); |
dot("$B$",B,1.5SW,linewidth(4)); | dot("$B$",B,1.5SW,linewidth(4)); | ||
dot("$C$",C,1.5SE,linewidth(4)); | dot("$C$",C,1.5SE,linewidth(4)); | ||
dot("$A$",A,1.5N,linewidth(4)); | dot("$A$",A,1.5N,linewidth(4)); | ||
− | dot(D,linewidth(4)); | + | dot("$D$",D,1.5SW,linewidth(4)); |
− | dot(E,linewidth(4)); | + | dot("$E$",e,1.5SE,linewidth(4)); |
− | dot(F,linewidth(4)); | + | dot("$F$",F,1.5E,linewidth(4)); |
− | dot(G,linewidth(4)); | + | dot("$G$",G,1.5NE,linewidth(4)); |
− | dot(H,linewidth(4)); | + | dot("$H$",H,1.5NW,linewidth(4)); |
− | dot(I,linewidth(4)); | + | dot("$I$",I,1.5W,linewidth(4)); |
− | dot( | + | dot("$X$",X,1.5S,linewidth(4)); |
− | dot( | + | dot("$Y$",Y,1.5NW,linewidth(4)); |
− | dot( | + | dot("$Z$",Z,1.5NE,linewidth(4)); |
− | label("$55$",midpoint( | + | label("$55$",midpoint(H--G),S,red); |
− | label("$ | + | label("$15$",midpoint(e--F),dir(160),red); |
− | label("$ | + | label("$45$",midpoint(I--D),dir(55),red); |
− | label("$\ell_A$", | + | label("$\ell_A$",Z+9/8*(Y-Z),1.5*dir(B--C)); |
− | label("$\ell_B$", | + | label("$\ell_B$",X+9/8*(Z-X),1.5*dir(C--A)); |
− | label("$\ell_C$", | + | label("$\ell_C$",Y+9/8*(X-Y),1.5*dir(A--B)); |
</asy> | </asy> | ||
− | ~MRENTHUSIASM | + | ~MRENTHUSIASM (diagram edited by integralarefun) |
==Solution 1== | ==Solution 1== |
Revision as of 18:58, 4 November 2022
Problem
Triangle has side lengths , and . Lines , and are drawn parallel to , and , respectively, such that the intersections of , and with the interior of are segments of lengths , and , respectively. Find the perimeter of the triangle whose sides lie on lines , and .
Diagram
~MRENTHUSIASM (diagram edited by integralarefun)
Solution 1
Let the points of intersection of with divide the sides into consecutive segments . Furthermore, let the desired triangle be , with closest to side , closest to side , and closest to side . Hence, the desired perimeter is since , , and .
Note that , so using similar triangle ratios, we find that , , , and .
We also notice that and . Using similar triangles, we get that Hence, the desired perimeter is -ktong
Solution 2
Let the diagram be set up like that in Solution 1.
By similar triangles we have Thus
Since and , the altitude of from is half the altitude of from , say . Also since , the distance from to is . Therefore the altitude of from is .
By triangle scaling, the perimeter of is of that of , or
~ Nafer
Solution 3
Notation shown on diagram. By similar triangles we have So, vladimir.shelomovskii@gmail.com, vvsss
See Also
2019 AIME II (Problems • Answer Key • Resources) | ||
Preceded by Problem 6 |
Followed by Problem 8 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.