Difference between revisions of "2021 Fall AMC 12B Problems/Problem 19"

(Remark)
(Remark)
Line 22: Line 22:
 
==Remark==
 
==Remark==
 
For the regular polygons with <math>5,6,7,</math> and <math>8</math> sides, the <math>68</math> points of intersection inside the circle are shown below:
 
For the regular polygons with <math>5,6,7,</math> and <math>8</math> sides, the <math>68</math> points of intersection inside the circle are shown below:
 +
<asy>
 +
/* Made by MRENTHUSIASM */
  
 +
size(350);
 +
path p5 = polygon(5);
 +
path p6 = polygon(6);
 +
path p7 = rotate(180)*polygon(7);
 +
path p8 = polygon(8);
 +
 +
draw(Circle(origin,1));
 +
 +
draw(p5,red);
 +
draw(p6,green);
 +
draw(p7,blue);
 +
draw(p8,olive);
 +
 +
dot(intersectionpoints(p5,p6),linewidth(2.5));
 +
dot(intersectionpoints(p5,p7),linewidth(2.5));
 +
dot(intersectionpoints(p5,p8),linewidth(2.5));
 +
dot(intersectionpoints(p6,p7),linewidth(2.5));
 +
dot(intersectionpoints(p6,p8),linewidth(2.5));
 +
dot(intersectionpoints(p7,p8),linewidth(2.5));
 +
</asy>
 
~MRENTHUSIASM
 
~MRENTHUSIASM
  

Revision as of 01:01, 12 January 2023

The following problem is from both the 2021 Fall AMC 10B #21 and 2021 Fall AMC 12B #19, so both problems redirect to this page.

Problem

Regular polygons with $5,6,7,$ and $8$ sides are inscribed in the same circle. No two of the polygons share a vertex, and no three of their sides intersect at a common point. At how many points inside the circle do two of their sides intersect?

$(\textbf{A})\: 52\qquad(\textbf{B}) \: 56\qquad(\textbf{C}) \: 60\qquad(\textbf{D}) \: 64\qquad(\textbf{E}) \: 68$

Solution

Imagine we have $2$ regular polygons with $m$ and $n$ sides and $m>n$ inscribed in a circle without sharing a vertex. We see that each side of the polygon with $n$ sides (the polygon with fewer sides) will be intersected twice. (We can see this because to have a vertex of the $m$-gon on an arc subtended by a side of the $n$-gon, there will be one intersection to “enter” the arc and one to “exit” the arc. ~KingRavi)

This means that we will end up with $2$ times the number of sides in the polygon with fewer sides.

If we have polygons with $5,$ $6,$ $7,$ and $8$ sides, we need to consider each possible pair of polygons and count their intersections.

Throughout $6$ of these pairs, the $5$-sided polygon has the least number of sides $3$ times, the $6$-sided polygon has the least number of sides $2$ times, and the $7$-sided polygon has the least number of sides $1$ time.

Therefore the number of intersections is $2\cdot(3\cdot5+2\cdot6+1\cdot7)=\boxed{(\textbf{E}) \:68}$.

~kingofpineapplz

Remark

For the regular polygons with $5,6,7,$ and $8$ sides, the $68$ points of intersection inside the circle are shown below: [asy] /* Made by MRENTHUSIASM */  size(350); path p5 = polygon(5); path p6 = polygon(6); path p7 = rotate(180)*polygon(7); path p8 = polygon(8);  draw(Circle(origin,1));  draw(p5,red); draw(p6,green); draw(p7,blue); draw(p8,olive);  dot(intersectionpoints(p5,p6),linewidth(2.5)); dot(intersectionpoints(p5,p7),linewidth(2.5)); dot(intersectionpoints(p5,p8),linewidth(2.5)); dot(intersectionpoints(p6,p7),linewidth(2.5)); dot(intersectionpoints(p6,p8),linewidth(2.5)); dot(intersectionpoints(p7,p8),linewidth(2.5)); [/asy] ~MRENTHUSIASM

Video Solution by Interstigation

https://youtu.be/7cfZwwYSttQ

~Interstigation

Video Solution 2 by WhyMath

https://youtu.be/5nHMBfDyvps

~savannahsolver

Video Solution by TheBeautyofMath

https://youtu.be/yTQSKinIo8g

See Also

2021 Fall AMC 10B (ProblemsAnswer KeyResources)
Preceded by
Problem 20
Followed by
Problem 22
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions
2021 Fall AMC 12B (ProblemsAnswer KeyResources)
Preceded by
Problem 18
Followed by
Problem 20
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png