Difference between revisions of "2023 AMC 12A Problems/Problem 13"

(Created page with "Hey the solutions will be posted after the contest, most likely around a couple weeks afterwords. We are not going to leak the questions to you, best of luck and I hope you ge...")
 
(import, redirect)
Line 1: Line 1:
Hey the solutions will be posted after the contest, most likely around a couple weeks afterwords. We are not going to leak the questions to you, best of luck and I hope you get a good score.
+
==Problem==
  
-Jonathan Yu
+
In a table tennis tournament every participant played every other participant exactly once. Although there were twice as many right-handed players as left-handed players, the number of games won by left-handed players was <math>40\%</math> more than the number of games won by right-handed players. (There were no ties and no ambidextrous players.) What is the total number of games played?
 +
 
 +
<math>\textbf{(A) }15\qquad\textbf{(B) }36\qquad\textbf{(C) }45\qquad\textbf{(D) }48\qquad\textbf{(E) }66</math>
 +
 
 +
==Solution 1 (3 min solve)==
 +
We know that the total amount of games must be the sum of games won by left and right handed players. Then, we can write <math>g = l + r</math>, and since <math>l = 1.4r</math>, <math>g = 2.4r</math>. Given that <math>r</math> and <math>g</math> are both integers, <math>g/2.4</math> also must be an integer. From here we can see that <math>g</math> must be divisible by 12, leaving only answers B and D. Now we know the formula for how many games are played in this tournament is <math>n(n-1)/2</math>, the sum of the first <math>n-1</math> triangular numbers. Now setting 36 and 48 equal to the equation will show that two consecutive numbers must equal 72 or 96. Clearly <math>72=8*9</math>, so the answer is <math>\boxed{\textbf{(B) }36}</math>.
 +
 
 +
~~ Antifreeze5420
 +
 
 +
==Solution 2==
 +
First, every player played the other, so there's <math>n\choose2</math> games. Also, if the right-handed won <math>x</math> games, the left handed won <math>7/5x</math>, meaning that the total amount of games was <math>12/5x</math>, so the total amount of games is divisible by <math>12</math>.
 +
 
 +
Then, we do something funny and look at the answer choices. Only <math>\boxed{\textbf{(B) }36}</math> satisfies our 2 findings.
 +
 
 +
==Solution 3==
 +
Let <math>r</math> be the amount of games the right-handed won. Since the left-handed won <math>1.4r</math> games, the total number of games played can be expressed as <math>(2.4)r</math>, or <math>12/5r</math>, meaning that the answer is divisible by 12. This brings us down to two answer choices, <math>B</math> and <math>D</math>.
 +
We note that the answer is some number <math>x</math> choose <math>2</math>. This means the answer is in the form <math>x(x-1)/2</math>. Since answer choice D gives <math>48 = x(x-1)/2</math>, and <math>96 = x(x-1)</math> has no integer solutions, we know that <math>\boxed{\textbf{(B) }36}</math> is the only possible choice.
 +
 
 +
== Video Solution 1 by OmegaLearn ==
 +
https://youtu.be/BXgQIV2WbOA
 +
 
 +
==See Also==
 +
{{AMC10 box|year=2023|ab=A|num-b=15|num-a=17}}
 +
{{AMC12 box|year=2023|ab=A|num-b=12|num-a=14}}
 +
{{MAA Notice}}

Revision as of 22:48, 9 November 2023

Problem

In a table tennis tournament every participant played every other participant exactly once. Although there were twice as many right-handed players as left-handed players, the number of games won by left-handed players was $40\%$ more than the number of games won by right-handed players. (There were no ties and no ambidextrous players.) What is the total number of games played?

$\textbf{(A) }15\qquad\textbf{(B) }36\qquad\textbf{(C) }45\qquad\textbf{(D) }48\qquad\textbf{(E) }66$

Solution 1 (3 min solve)

We know that the total amount of games must be the sum of games won by left and right handed players. Then, we can write $g = l + r$, and since $l = 1.4r$, $g = 2.4r$. Given that $r$ and $g$ are both integers, $g/2.4$ also must be an integer. From here we can see that $g$ must be divisible by 12, leaving only answers B and D. Now we know the formula for how many games are played in this tournament is $n(n-1)/2$, the sum of the first $n-1$ triangular numbers. Now setting 36 and 48 equal to the equation will show that two consecutive numbers must equal 72 or 96. Clearly $72=8*9$, so the answer is $\boxed{\textbf{(B) }36}$.

~~ Antifreeze5420

Solution 2

First, every player played the other, so there's $n\choose2$ games. Also, if the right-handed won $x$ games, the left handed won $7/5x$, meaning that the total amount of games was $12/5x$, so the total amount of games is divisible by $12$.

Then, we do something funny and look at the answer choices. Only $\boxed{\textbf{(B) }36}$ satisfies our 2 findings.

Solution 3

Let $r$ be the amount of games the right-handed won. Since the left-handed won $1.4r$ games, the total number of games played can be expressed as $(2.4)r$, or $12/5r$, meaning that the answer is divisible by 12. This brings us down to two answer choices, $B$ and $D$. We note that the answer is some number $x$ choose $2$. This means the answer is in the form $x(x-1)/2$. Since answer choice D gives $48 = x(x-1)/2$, and $96 = x(x-1)$ has no integer solutions, we know that $\boxed{\textbf{(B) }36}$ is the only possible choice.

Video Solution 1 by OmegaLearn

https://youtu.be/BXgQIV2WbOA

See Also

2023 AMC 10A (ProblemsAnswer KeyResources)
Preceded by
Problem 15
Followed by
Problem 17
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions
2023 AMC 12A (ProblemsAnswer KeyResources)
Preceded by
Problem 12
Followed by
Problem 14
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png