Difference between revisions of "2023 AMC 12A Problems/Problem 4"
(shift to 12A) |
|||
Line 1: | Line 1: | ||
==Problem== | ==Problem== | ||
− | + | How many digits are in the base-ten representation of <math>8^5 \cdot 5^{10} \cdot 15^5</math>? | |
− | < | + | <cmath>\textbf{(A)}~14\qquad\textbf{(B)}~15\qquad\textbf{(C)}~16\qquad\textbf{(D)}~17\qquad\textbf{(E)}~18\qquad</cmath> |
==Solution 1== | ==Solution 1== | ||
− | + | Prime factorizing this gives us <math>2^{15}\cdot3^{5}\cdot5^{15}</math> Pairing <math>2^{15}</math> and <math>5^{15}</math> gives us a number with <math>15</math> zeros giving us 15 digits. <math>3^5=243</math> and this adds an extra 3 digits. <math>15+3=\text{\boxed{(E)18}}</math> | |
~zhenghua | ~zhenghua | ||
− | + | ==See Also== | |
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | == See Also == | ||
− | |||
{{AMC12 box|year=2023|ab=A|num-b=3|num-a=5}} | {{AMC12 box|year=2023|ab=A|num-b=3|num-a=5}} | ||
+ | {{AMC10 box|year=2023|ab=A|num-b=4|num-a=6}} | ||
{{MAA Notice}} | {{MAA Notice}} |
Revision as of 22:14, 9 November 2023
Problem
How many digits are in the base-ten representation of ?
Solution 1
Prime factorizing this gives us Pairing and gives us a number with zeros giving us 15 digits. and this adds an extra 3 digits.
~zhenghua
See Also
2023 AMC 12A (Problems • Answer Key • Resources) | |
Preceded by Problem 3 |
Followed by Problem 5 |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
All AMC 12 Problems and Solutions |
2023 AMC 10A (Problems • Answer Key • Resources) | ||
Preceded by Problem 4 |
Followed by Problem 6 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AMC 10 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.