Difference between revisions of "2023 AMC 12A Problems/Problem 4"

(shift to 12A)
Line 1: Line 1:
 
==Problem==
 
==Problem==
A quadrilateral has all integer sides lengths, a perimeter of <math>26</math>, and one side of length <math>4</math>. What is the greatest possible length of one side of this quadrilateral?
+
How many digits are in the base-ten representation of <math>8^5 \cdot 5^{10} \cdot 15^5</math>?
  
<math>\textbf{(A) }9\qquad\textbf{(B) }10\qquad\textbf{(C) }11\qquad\textbf{(D) }12\qquad\textbf{(E) }13</math>
+
<cmath>\textbf{(A)}~14\qquad\textbf{(B)}~15\qquad\textbf{(C)}~16\qquad\textbf{(D)}~17\qquad\textbf{(E)}~18\qquad</cmath>
  
 
==Solution 1==
 
==Solution 1==
Let's use the triangle inequality. We know that for a triangle, the 2 shorter sides must always be longer than the longest side. Similarly for a convex quadrilateral, the shortest 3 sides must always be longer than the longest side. Thus, the answer is <math>\frac{26}{2}-1=13-1=\boxed {\textbf{(D) 12}}</math>
+
Prime factorizing this gives us <math>2^{15}\cdot3^{5}\cdot5^{15}</math> Pairing <math>2^{15}</math> and <math>5^{15}</math> gives us a number with <math>15</math> zeros giving us 15 digits. <math>3^5=243</math> and this adds an extra 3 digits. <math>15+3=\text{\boxed{(E)18}}</math>
  
 
~zhenghua
 
~zhenghua
  
==Solution 2==
+
==See Also==
Say the chosen side is <math>a</math> and the other sides are <math>b,c,d</math>.
 
 
 
By the Generalised Polygon Inequality, <math>a<b+c+d</math>. We also have <math>a+b+c+d=26\Rightarrow b+c+d=26-a</math>.
 
 
 
Combining these two, we get <math>a<26-a\Rightarrow a<13</math>.
 
 
 
The smallest length that satisfies this is <math>a=\boxed {\textbf{(D) 12}}</math>
 
 
 
~not_slay
 
 
 
== Solution 3 (Fast) ==
 
By Brahmagupta's Formula, the area of the rectangle is defined by <math>\sqrt{(s-a)(s-b)(s-c)(s-d)}</math> where <math>s</math> is the semi-perimeter. If the perimeter of the rectangle is <math>26</math>, then the semi-perimeter will be <math>13</math>. The area of the rectangle must be positive so the difference between the semi-perimeter and a side length must be greater than <math>0</math> as otherwise, the area will be <math>0</math> or negative. Therefore, the longest a side can possibly be in this rectangle is <math>\boxed {\textbf{(D) 12}}</math>
 
 
 
~[https://artofproblemsolving.com/wiki/index.php/User:South South]
 
 
 
== See Also ==
 
{{AMC10 box|year=2023|ab=A|num-b=3|num-a=5}}
 
 
{{AMC12 box|year=2023|ab=A|num-b=3|num-a=5}}
 
{{AMC12 box|year=2023|ab=A|num-b=3|num-a=5}}
 +
{{AMC10 box|year=2023|ab=A|num-b=4|num-a=6}}
 
{{MAA Notice}}
 
{{MAA Notice}}

Revision as of 22:14, 9 November 2023

Problem

How many digits are in the base-ten representation of $8^5 \cdot 5^{10} \cdot 15^5$?

\[\textbf{(A)}~14\qquad\textbf{(B)}~15\qquad\textbf{(C)}~16\qquad\textbf{(D)}~17\qquad\textbf{(E)}~18\qquad\]

Solution 1

Prime factorizing this gives us $2^{15}\cdot3^{5}\cdot5^{15}$ Pairing $2^{15}$ and $5^{15}$ gives us a number with $15$ zeros giving us 15 digits. $3^5=243$ and this adds an extra 3 digits. $15+3=\text{\boxed{(E)18}}$

~zhenghua

See Also

2023 AMC 12A (ProblemsAnswer KeyResources)
Preceded by
Problem 3
Followed by
Problem 5
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions
2023 AMC 10A (ProblemsAnswer KeyResources)
Preceded by
Problem 4
Followed by
Problem 6
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png