Difference between revisions of "2023 AMC 12A Problems/Problem 18"
(→Solution 1) |
m (→Solution 1) |
||
Line 61: | Line 61: | ||
Now, if we connect centers of <math>C_4</math>, <math>C_3</math> and <math>C_1</math>/<math>C_2</math>, we get a right angled triangle. | Now, if we connect centers of <math>C_4</math>, <math>C_3</math> and <math>C_1</math>/<math>C_2</math>, we get a right angled triangle. | ||
− | + | Let the radius of <math>C_4</math> equal <math>r</math>. With the pythagorean theorem on our triangle, we have | |
<cmath>\left(r+\frac{3}{4}\right)^2+\left(\frac{1}{4}\right)^2=(1-r)^2</cmath> | <cmath>\left(r+\frac{3}{4}\right)^2+\left(\frac{1}{4}\right)^2=(1-r)^2</cmath> | ||
− | Solving | + | Solving this equation gives us |
<cmath>r = \boxed{\textbf{(D) } \frac{3}{28}}</cmath> | <cmath>r = \boxed{\textbf{(D) } \frac{3}{28}}</cmath> |
Revision as of 21:29, 10 November 2023
- The following problem is from both the 2023 AMC 10A #22 and 2023 AMC 12A #18, so both problems redirect to this page.
Problem
Circle and each have radius , and the distance between their centers is . Circle is the largest circle internally tangent to both and . Circle is internally tangent to both and and externally tangent to . What is the radius of ?
Solution 1
With some simple geometry skills, we can find that has a radius of .
Since is internally tangent to , center of , and their tangent point must be on the same line.
Now, if we connect centers of , and /, we get a right angled triangle.
Let the radius of equal . With the pythagorean theorem on our triangle, we have
Solving this equation gives us
~lptoggled
~ShawnX (Diagram)
Video Solution by epicbird08
~EpicBird08
Video Solution
~Steven Chen (Professor Chen Education Palace, www.professorchenedu.com)
See Also
2023 AMC 10A (Problems • Answer Key • Resources) | ||
Preceded by Problem 21 |
Followed by Problem 23 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AMC 10 Problems and Solutions |
2023 AMC 12A (Problems • Answer Key • Resources) | |
Preceded by Problem 17 |
Followed by Problem 19 |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
All AMC 12 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.