Difference between revisions of "2023 AMC 12A Problems/Problem 21"

(Solution 1)
(Solution 1)
Line 10: Line 10:
 
To find the total amount of vertices we first find the amount of edges, and that is <math>\frac{20 \times 3}{2}</math>. Next, to find the amount of vertices we can use Euler's characteristic, <math>V - E + F = 2</math>, and therefore the amount of vertices is <math>12</math>  
 
To find the total amount of vertices we first find the amount of edges, and that is <math>\frac{20 \times 3}{2}</math>. Next, to find the amount of vertices we can use Euler's characteristic, <math>V - E + F = 2</math>, and therefore the amount of vertices is <math>12</math>  
  
So there are <math>P_{3}^{12} = 1320</math> ways to choose 3 distinct points.
+
So there are <math>P(12,3)</math> = 1320<math> ways to choose 3 distinct points.
  
Now, the furthest distance we can get from one point to another point in a icosahedron is 3. Which gives us a range of <math>1 \leq d(Q, R), d(R, S) \leq 3</math>
+
Now, the furthest distance we can get from one point to another point in a icosahedron is 3. Which gives us a range of </math>1 \leq d(Q, R), d(R, S) \leq 3<math>
  
 
With some case work, we get:
 
With some case work, we get:
  
Case 1: <math>d(Q, R) = 3; d(R, S) = 1, 2</math>
+
Case 1: </math>d(Q, R) = 3; d(R, S) = 1, 2<math>
  
 
Since we have only one way to choose Q, that is, the opposite point from R, we have one option for Q and any of the other points could work for S.
 
Since we have only one way to choose Q, that is, the opposite point from R, we have one option for Q and any of the other points could work for S.
  
Then, we get <math>12 \times 1 \times 10 = 120</math> (ways to choose R × ways to choose Q × ways to choose S)
+
Then, we get </math>12 \times 1 \times 10 = 120<math> (ways to choose R × ways to choose Q × ways to choose S)
  
Case 2: <math>d(Q, R) = 2; d(R, S) = 1</math>
+
Case 2: </math>d(Q, R) = 2; d(R, S) = 1<math>
  
 
We can visualize the icosahedron as 4 rows, first row with 1 vertex, second row with 5 vertices, third row with 5 vertices and fourth row with 1 vertex. We set R as the one vertex on the first row, and we have 12 options for R. Then, Q can be any of the 5 points on the third row and finally S can be one of the 5 points on the second row.
 
We can visualize the icosahedron as 4 rows, first row with 1 vertex, second row with 5 vertices, third row with 5 vertices and fourth row with 1 vertex. We set R as the one vertex on the first row, and we have 12 options for R. Then, Q can be any of the 5 points on the third row and finally S can be one of the 5 points on the second row.
  
Therefore, we have <math>12 \times 5 \times 5 = 300</math> (ways to choose R × ways to choose Q × ways to choose S)
+
Therefore, we have </math>12 \times 5 \times 5 = 300<math> (ways to choose R × ways to choose Q × ways to choose S)
  
Hence, <math>P(d(Q, R)>d(R, S)) = \frac{120+300}{1320} = \boxed{\textbf{(A) } \frac{7}{22}}</math>
+
Hence, </math>P(d(Q, R)>d(R, S)) = \frac{120+300}{1320} = \boxed{\textbf{(A) } \frac{7}{22}}$
  
 
~lptoggled, edited by ESAOPS
 
~lptoggled, edited by ESAOPS

Revision as of 21:23, 10 November 2023

The following problem is from both the 2023 AMC 10A #25 and 2023 AMC 12A #21, so both problems redirect to this page.

Problem

If $A$ and $B$ are vertices of a polyhedron, define the distance $d(A,B)$ to be the minimum number of edges of the polyhedron one must traverse in order to connect $A$ and $B$. For example, if $\overline{AB}$ is an edge of the polyhedron, then $d(A, B) = 1$, but if $\overline{AC}$ and $\overline{CB}$ are edges and $\overline{AB}$ is not an edge, then $d(A, B) = 2$. Let $Q$, $R$, and $S$ be randomly chosen distinct vertices of a regular icosahedron (regular polyhedron made up of 20 equilateral triangles). What is the probability that $d(Q, R) > d(R, S)$?

$\textbf{(A) } \frac{7}{22} \qquad \textbf{(B) } \frac{1}{3} \qquad \textbf{(C) } \frac{3}{8} \qquad \textbf{(D) } \frac{5}{12} \qquad \textbf{(E) } \frac{1}{2}$

Solution 1

To find the total amount of vertices we first find the amount of edges, and that is $\frac{20 \times 3}{2}$. Next, to find the amount of vertices we can use Euler's characteristic, $V - E + F = 2$, and therefore the amount of vertices is $12$

So there are $P(12,3)$ = 1320$ways to choose 3 distinct points.

Now, the furthest distance we can get from one point to another point in a icosahedron is 3. Which gives us a range of$ (Error compiling LaTeX. Unknown error_msg)1 \leq d(Q, R), d(R, S) \leq 3$With some case work, we get:

Case 1:$ (Error compiling LaTeX. Unknown error_msg)d(Q, R) = 3; d(R, S) = 1, 2$Since we have only one way to choose Q, that is, the opposite point from R, we have one option for Q and any of the other points could work for S.

Then, we get$ (Error compiling LaTeX. Unknown error_msg)12 \times 1 \times 10 = 120$(ways to choose R × ways to choose Q × ways to choose S)

Case 2:$ (Error compiling LaTeX. Unknown error_msg)d(Q, R) = 2; d(R, S) = 1$We can visualize the icosahedron as 4 rows, first row with 1 vertex, second row with 5 vertices, third row with 5 vertices and fourth row with 1 vertex. We set R as the one vertex on the first row, and we have 12 options for R. Then, Q can be any of the 5 points on the third row and finally S can be one of the 5 points on the second row.

Therefore, we have$ (Error compiling LaTeX. Unknown error_msg)12 \times 5 \times 5 = 300$(ways to choose R × ways to choose Q × ways to choose S)

Hence,$ (Error compiling LaTeX. Unknown error_msg)P(d(Q, R)>d(R, S)) = \frac{120+300}{1320} = \boxed{\textbf{(A) } \frac{7}{22}}$

~lptoggled, edited by ESAOPS

Solution 2 (Cheese + Actual way)

In total, there are $\binom{12}{3}=220$ ways to select the points. However, if we look at the denominators of $B,C,D$, they are $3,8,12$ which are not divisors of $220$. Also $\frac{1}{2}$ is impossible as cases like $d(Q, R) = d(R, S)$ exist. The only answer choice left is $\boxed{\textbf{(A) } \frac{7}{22}}$

(Actual way)

Fix an arbitrary point, to select the rest $2$ points, there are $\binom{11}{2}=55$ ways. To make $d(Q, R)=d(R, S), d=1/2$. Which means there are in total $2\cdot \binom{5}{2}=20$ ways to make the distance the same. $\frac{1}{2}(1-\frac{20}{55})= \boxed{\textbf{(A) } \frac{7}{22}}$ ~bluesoul

Solution 3

We can imagine the icosahedron as having 3 layers. 1 vertex at the top, 5 vertices below connected to the top vertex, 5 vertices below that which are 2 edges away from the top vertex, and one vertex at the bottom that is 3 edges away. WLOG because the icosahedron is symmetric around all vertices, we can say that R is the vertex at the top. So now, we just need to find the probability that S is on a layer closer to the top than Q. We can do casework on the layer S is on to get \[\frac{5}{11} \cdot \frac{6}{10} + \frac{5}{11} \cdot \frac{1}{10} = \frac{35}{110} = \frac{7}{22}\] So the answer is $\boxed{\textbf{(A) }\frac{7}{22}}$. -awesomeparrot

Solution 4

We can actually see that the probability that $d(Q, R) > d(R, S)$ is the exact same as $d(Q, R) < d(R, S)$ because $d(Q, R)$ and $d(R, S)$ have no difference. (In other words, we can just swap Q and S, meaning that can be called the same probability-wise.) Therefore, we want to find the probability that $d(Q, R) = d(R, S)$.

WLOG, we can rotate the icosahedron so that R is the top of the icosahedron. Then we can divide this into 2 cases:

1. They are on the second layer

There are 5 ways to put one point, and 4 ways to put the other point such that $d(Q, R) = d(R, S) = 1$. So, there are $5 \cdot 4 = 20$ ways to put them on the second layer.

2. They are on the third layer

There are 5 ways to put one point, and 4 ways to put the other point such that $d(Q, R) = d(R, S) = 2$. So, there are $5 \cdot 4 = 20$ ways to put them on the third layer.

The total number of ways to choose P and S are $11 \cdot 10 = 110$ (because there are 12 vertices), so the probability that $d(Q, R) = d(R, S)$ is $\frac{20+20}{110} = \frac{4}{11}$.

Therefore, the probability that $d(Q, R) > d(R, S)$ is $\frac{1 - \frac{4}{11}}{2} = \boxed{\textbf{(A) }\frac{7}{22}}$

~Ethanzhang1001

Solution 5

We know that there are $20$ faces. Each of those faces has $3$ borders (since each is a triangle), and each edge is used as a border twice (for each face on either side). Thus, there are $\dfrac{20\cdot3}2=30$ edges.

By Euler's formula, which states that $v-e+f=2$ for all convex polyhedra, we know that there are $2-f+e=12$ vertices.

The answer can be counted by first counting the number of possible paths that will yield $d(Q, R) > d(R, S)$ and dividing it by $12\cdot11\cdot10$ (or $\dbinom{12}3$, depending on the approach). In either case, one will end up dividing by $11$ somewhere in the denominator. We can then hope that there will be no factor of $11$ in the numerator (which would cancel the $11$ in the denominator out), and answer the only option that has an $11$ in the denominator: $\boxed{\textbf{(A) }\frac{7}{22}}$.

~Technodoggo

Additional note by "Fruitz": Note that one can eliminate $1/2$ by symmetry if you swap the ineq sign.

Solution 6 (Case Work)

2023AMC12AP21.png

WLOG, let R be at the top-most vertex of the icosahedron. There are $2$ cases where $d(Q, R) > d(R, S)$.

Case 1: $Q$ is at the bottom-most vertex

If $Q$ is at the bottom-most vertex, no matter where $S$ is, $d(Q, R) > d(R, S)$. The probability that $Q$ is at the bottom-most vertex is $\frac{1}{11}$

Case 2: $Q$ is at the second layer

If $Q$ is at the second layer, $S$ must be at the first layer, for $d(Q, R) > d(R, S)$ to be true. The probability that $Q$ is at the second layer, and $S$ is at the first layer is $\frac{5}{11} \cdot \frac{5}{10} = \frac{5}{22}$

\[\frac{1}{11} + \frac{5}{22} = \boxed{\textbf{(A) }\frac{7}{22}}\]

~isabelchen

Video Solution by epicbird08

https://youtu.be/s_6q0C0z6Ug

~EpicBird08

See also

2023 AMC 10A (ProblemsAnswer KeyResources)
Preceded by
Problem 24
Followed by
Last Problem
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions
2023 AMC 12A (ProblemsAnswer KeyResources)
Preceded by
Problem 20
Followed by
Problem 22
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png