Difference between revisions of "2012 AMC 12B Problems/Problem 25"

(Solution 2)
(Solution 2)
Line 18: Line 18:
  
 
== Solution 2 ==
 
== Solution 2 ==
This is just another way for the reasoning of solution 1. Picture the question to be a grid of unit squares instead of a coordinate system. (This is just to make visualization easier.) Define a "cell" to be a rectangle in the set of <math>S.</math> For example, a cell can be  
+
This is just another way for the reasoning of solution 1. Picture the question to be a grid of unit squares instead of a coordinate system. Note that the restriction, (This is just to make visualization easier.) Define a "cell" to be a rectangle in the set of <math>S.</math> For example, a cell can be  
 
<asy>
 
<asy>
 
draw((0,0)--(0,1),black);
 
draw((0,0)--(0,1),black);
 
draw((0,0)--(0,1),black);
 
draw((0,0)--(0,1),black);
dot((0,0));
+
draw((0,0)--(0,1),black);
dot((3,7));
 
label("Produced with Asymptote "+version.VERSION,point(S),2S);
 
</asy>
 
  
 +
draw((0,0)--(0,1),black);
  
%\listfiles
+
draw((0,0)--(0,1),black);
%\documentclass[11pt,a4paper]{article}
 
\documentclass[11pt,border=2pt]{standalone}
 
\usepackage[T1]{fontenc}
 
  
\usepackage{tikz}
 
\usetikzlibrary{matrix}
 
  
\usepackage{lmodern}
+
label("The cell is labeled in red"
\usepackage{microtype}
+
</asy>
 
 
\begin{document}
 
  \begin{tikzpicture}[
 
    line cap=round,
 
    line join=round,
 
  ]
 
    \matrix (grid) [
 
      matrix of nodes,
 
      column sep=-\pgflinewidth,
 
      row sep=-\pgflinewidth,
 
      nodes in empty cells,
 
      nodes={
 
        draw,
 
        anchor=center,
 
        minimum size=3em
 
      }
 
    ] {
 
      1 &  &  \\
 
        &  &  \\
 
        &  &  \\
 
    };
 
  \end{tikzpicture}
 
\end{document}
 
  
 
==Video Solution by Richard Rusczyk==
 
==Video Solution by Richard Rusczyk==

Revision as of 18:43, 2 August 2024

Problem 25

Let $S=\{(x,y) : x\in \{0,1,2,3,4\}, y\in \{0,1,2,3,4,5\},\text{ and } (x,y)\ne (0,0)\}$. Let $T$ be the set of all right triangles whose vertices are in $S$. For every right triangle $t=\triangle{ABC}$ with vertices $A$, $B$, and $C$ in counter-clockwise order and right angle at $A$, let $f(t)=\tan(\angle{CBA})$. What is \[\prod_{t\in T} f(t)?\]

$\textbf{(A)}\ 1\qquad\textbf{(B)}\ \frac{625}{144}\qquad\textbf{(C)}\ \frac{125}{24}\qquad\textbf{(D)}\ 6\qquad\textbf{(E)}\ \frac{625}{24}$

Solution 1

Consider reflections. For any right triangle $ABC$ with the right labeling described in the problem, any reflection $A'B'C'$ labeled that way will give us $\tan CBA \cdot \tan C'B'A' = 1$. First we consider the reflection about the line $y=2.5$. Only those triangles $\subseteq T$ that have one vertex at $(0,5)$ do not reflect to a traingle $\subseteq T$. Within those triangles, consider a reflection about the line $y=5-x$. Then only those triangles $\subseteq T$ that have one vertex on the line $y=0$ do not reflect to a triangle $\subseteq T$. So we only need to look at right triangles that have vertices $(0,5), (*,0), (*,*)$. There are three cases:

Case 1: $A=(0,5)$. Then $B=(*,0)$ is impossible.

Case 2: $B=(0,5)$. Then we look for $A=(x,y)$ such that $\angle BAC=90^{\circ}$ and that $C=(*,0)$. They are: $(A=(x,5), C=(x,0))$, $(A=(3,2), C=(1,0))$ and $(A=(4,1), C=(3,0))$. The product of their values of $\tan \angle CBA$ is $\frac{5}{1}\cdot  \frac{5}{2} \cdot \frac{5}{3} \cdot \frac{5}{4} \cdot \frac{1}{4} \cdot \frac{2}{3} = \frac{625}{144}$.

Case 3: $C=(0,5)$. Then $A=(*,0)$ is impossible.

Therefore $\boxed{\textbf{(B)}  \ \frac{625}{144}}$ is the answer.

Solution 2

This is just another way for the reasoning of solution 1. Picture the question to be a grid of unit squares instead of a coordinate system. Note that the restriction, (This is just to make visualization easier.) Define a "cell" to be a rectangle in the set of $S.$ For example, a cell can be

draw((0,0)--(0,1),black);
draw((0,0)--(0,1),black);
draw((0,0)--(0,1),black);

draw((0,0)--(0,1),black);

draw((0,0)--(0,1),black);


label("The cell is labeled in red"
 (Error making remote request. Unknown error_msg)

Video Solution by Richard Rusczyk

https://artofproblemsolving.com/videos/amc/2012amc12b/279

~dolphin7

See Also

2012 AMC 12B (ProblemsAnswer KeyResources)
Preceded by
Problem 24
Followed by
Last Problem
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png