Difference between revisions of "1971 AHSME Problems/Problem 20"

(added second solution)
 
Line 7: Line 7:
 
\textbf{(C) }\textstyle\frac{3}{2}\qquad
 
\textbf{(C) }\textstyle\frac{3}{2}\qquad
 
\textbf{(D) }2\qquad
 
\textbf{(D) }2\qquad
\textbf{(E) }\text{None of these} </math>
+
\textbf{(E) }\text{None of these}</math>
  
 
== Solution 1 ==
 
== Solution 1 ==

Latest revision as of 13:41, 23 September 2024

Problem

The sum of the squares of the roots of the equation $x^2+2hx=3$ is $10$. The absolute value of $h$ is equal to

$\textbf{(A) }-1\qquad \textbf{(B) }\textstyle\frac{1}{2}\qquad \textbf{(C) }\textstyle\frac{3}{2}\qquad \textbf{(D) }2\qquad \textbf{(E) }\text{None of these}$

Solution 1

We can rewrite the equation as $x^2 + 2hx - 3 = 0.$ By Vieta's Formulas, the sum of the roots is $-2h$ and the product of the roots is $-3.$

Let the two roots be $r$ and $s.$ Note that \[r^2 + s^2 = (r+s)^2 - 2rs = (-2h)^2 -2(-3)\]

Therefore, $4h^2 + 6 = 10$ and $h = \pm 1.$ This doesn't match any of the answer choices, so the answer is $\boxed{\textbf{(E) }\text{None of these}}.$

-edited by coolmath34

Solution 2

The given equation can be rewritten as $x^2+2hx-3=0$. By Vieta's Formulas, we know that the sum of the roots is $-2h$. Thus, by Newton Sums, we have the following equation: \begin{align*} 10+(2h)(-2h)+2(-3) &= 0 \\ 10-4h^2-6 &= 0 \\ -4h^2 &= -4 \\ h^2 &= 1 \\ |h| &= 1 \\ \end{align*} Thus, our answer is $\boxed{\textbf{(E) }\text{None of these}}$.

See Also

1971 AHSC (ProblemsAnswer KeyResources)
Preceded by
Problem 19
Followed by
Problem 21
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35
All AHSME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png