Difference between revisions of "1996 AIME Problems/Problem 10"

m (minor)
Line 5: Line 5:
 
<math>\dfrac{\cos{96^{\circ}}+\sin{96^{\circ}}}{\cos{96^{\circ}}-\sin{96^{\circ}}} =</math> <math>\dfrac{\sin{186^{\circ}}+\sin{96^{\circ}}}{\sin{186^{\circ}}-\sin{96^{\circ}}} =</math> <math>\dfrac{\sin{(141^{\circ}+45^{\circ})}+\sin{(141^{\circ}-45^{\circ})}}{\sin{(141^{\circ}+45^{\circ})}-\sin{(141^{\circ}-45^{\circ})}} =</math> <math>\dfrac{2\sin{141^{\circ}}\cos{45^{\circ}}}{2\cos{141^{\circ}}\sin{45^{\circ}}} = \tan{141^{\circ}}</math>.  
 
<math>\dfrac{\cos{96^{\circ}}+\sin{96^{\circ}}}{\cos{96^{\circ}}-\sin{96^{\circ}}} =</math> <math>\dfrac{\sin{186^{\circ}}+\sin{96^{\circ}}}{\sin{186^{\circ}}-\sin{96^{\circ}}} =</math> <math>\dfrac{\sin{(141^{\circ}+45^{\circ})}+\sin{(141^{\circ}-45^{\circ})}}{\sin{(141^{\circ}+45^{\circ})}-\sin{(141^{\circ}-45^{\circ})}} =</math> <math>\dfrac{2\sin{141^{\circ}}\cos{45^{\circ}}}{2\cos{141^{\circ}}\sin{45^{\circ}}} = \tan{141^{\circ}}</math>.  
  
The period of the tangent function is <math>180^\circ</math>, and the tangent function is one-to-one over each period of its domain.  
+
The period of the [[Trigonometry#Tangent|tangent]] function is <math>180^\circ</math>, and the tangent function is [[one-to-one]] over each period of its domain.  
  
 
Thus, <math>19x \equiv 141 \pmod{180}</math>.  
 
Thus, <math>19x \equiv 141 \pmod{180}</math>.  
Line 15: Line 15:
 
== See also ==
 
== See also ==
 
{{AIME box|year=1996|num-b=9|num-a=11}}
 
{{AIME box|year=1996|num-b=9|num-a=11}}
 +
 +
[[Category:Intermediate Trigonometry Problems]]

Revision as of 12:08, 13 August 2008

Problem

Find the smallest positive integer solution to $\tan{19x^{\circ}}=\dfrac{\cos{96^{\circ}}+\sin{96^{\circ}}}{\cos{96^{\circ}}-\sin{96^{\circ}}}$.

Solution

$\dfrac{\cos{96^{\circ}}+\sin{96^{\circ}}}{\cos{96^{\circ}}-\sin{96^{\circ}}} =$ $\dfrac{\sin{186^{\circ}}+\sin{96^{\circ}}}{\sin{186^{\circ}}-\sin{96^{\circ}}} =$ $\dfrac{\sin{(141^{\circ}+45^{\circ})}+\sin{(141^{\circ}-45^{\circ})}}{\sin{(141^{\circ}+45^{\circ})}-\sin{(141^{\circ}-45^{\circ})}} =$ $\dfrac{2\sin{141^{\circ}}\cos{45^{\circ}}}{2\cos{141^{\circ}}\sin{45^{\circ}}} = \tan{141^{\circ}}$.

The period of the tangent function is $180^\circ$, and the tangent function is one-to-one over each period of its domain.

Thus, $19x \equiv 141 \pmod{180}$.

Since $19^2 \equiv 361 \equiv 1 \pmod{180}$, multiplying both sides by $19$ yields $x \equiv 141 \cdot 19 \equiv (140+1)(18+1) \equiv 0+140+18+1 \equiv 159 \pmod{180}$.

Therefore, the smallest positive solution is $x = \boxed{159}$.

See also

1996 AIME (ProblemsAnswer KeyResources)
Preceded by
Problem 9
Followed by
Problem 11
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
All AIME Problems and Solutions