Difference between revisions of "1997 AIME Problems/Problem 15"

(See also)
m (tex)
Line 2: Line 2:
 
The sides of [[rectangle]] <math>ABCD</math> have lengths <math>10</math> and <math>11</math>. An [[equilateral triangle]] is drawn so that no point of the triangle lies outside <math>ABCD</math>. The maximum possible [[area]] of such a triangle can be written in the form <math>p\sqrt{q}-r</math>, where <math>p</math>, <math>q</math>, and <math>r</math> are positive integers, and <math>q</math> is not divisible by the square of any prime number. Find <math>p+q+r</math>.
 
The sides of [[rectangle]] <math>ABCD</math> have lengths <math>10</math> and <math>11</math>. An [[equilateral triangle]] is drawn so that no point of the triangle lies outside <math>ABCD</math>. The maximum possible [[area]] of such a triangle can be written in the form <math>p\sqrt{q}-r</math>, where <math>p</math>, <math>q</math>, and <math>r</math> are positive integers, and <math>q</math> is not divisible by the square of any prime number. Find <math>p+q+r</math>.
  
 +
__TOC__
 
== Solution ==
 
== Solution ==
 +
=== Solution 1 ===
 
Consider points on the [[complex plane]] <math>A (0,0),\ B (11,0),\ C (11,10),\ D (0,10)</math>. Since the rectangle is quite close to a square, we figure that the area of the equilateral triangle is maximized when a vertex of the triangle coincides with that of the rectangle. Set one [[vertex]] of the triangle at <math>A</math>, and the other two points <math>E</math> and <math>F</math> on <math>BC</math> and <math>CD</math>, respectively. Let <math>E (11,a)</math> and <math>F (b, 10)</math>. Since it's equilateral, then <math>E\cdot\text{cis}60^{\circ} = F</math>, so <math>(11 + ai)\left(\frac {1}{2} + \frac {\sqrt {3}}{2}i\right) = b + 10i</math>, and expanding we get <math>\left(\frac {11}{2} - \frac {a\sqrt {3}}{2}\right) + \left(\frac {11\sqrt {3}}{2} + \frac {a}{2}\right)i = b + 10i</math>.
 
Consider points on the [[complex plane]] <math>A (0,0),\ B (11,0),\ C (11,10),\ D (0,10)</math>. Since the rectangle is quite close to a square, we figure that the area of the equilateral triangle is maximized when a vertex of the triangle coincides with that of the rectangle. Set one [[vertex]] of the triangle at <math>A</math>, and the other two points <math>E</math> and <math>F</math> on <math>BC</math> and <math>CD</math>, respectively. Let <math>E (11,a)</math> and <math>F (b, 10)</math>. Since it's equilateral, then <math>E\cdot\text{cis}60^{\circ} = F</math>, so <math>(11 + ai)\left(\frac {1}{2} + \frac {\sqrt {3}}{2}i\right) = b + 10i</math>, and expanding we get <math>\left(\frac {11}{2} - \frac {a\sqrt {3}}{2}\right) + \left(\frac {11\sqrt {3}}{2} + \frac {a}{2}\right)i = b + 10i</math>.
  
Line 9: Line 11:
 
We can then set the real and imaginary parts equal, and solve for <math>(a,b) = (20 - 11\sqrt {3},22 - 10\sqrt {3})</math>. Hence a side <math>s</math> of the equilateral triangle can be found by <math>s^2 = AE^2 = a^2 + AB^2 = 884 - 440\sqrt{3}</math>. Using the area formula <math>\frac{s^2\sqrt{3}}{4}</math>, the area of the equilateral triangle is <math>\frac{(884-440\sqrt{3})\sqrt{3}}{4} = 221\sqrt{3} - 330</math>. Thus <math>p + q + r = 221 + 3 + 330 = \boxed{554}</math>.
 
We can then set the real and imaginary parts equal, and solve for <math>(a,b) = (20 - 11\sqrt {3},22 - 10\sqrt {3})</math>. Hence a side <math>s</math> of the equilateral triangle can be found by <math>s^2 = AE^2 = a^2 + AB^2 = 884 - 440\sqrt{3}</math>. Using the area formula <math>\frac{s^2\sqrt{3}}{4}</math>, the area of the equilateral triangle is <math>\frac{(884-440\sqrt{3})\sqrt{3}}{4} = 221\sqrt{3} - 330</math>. Thus <math>p + q + r = 221 + 3 + 330 = \boxed{554}</math>.
  
==Solution==
+
===Solution 2===
 +
This is a trigonometric re-statement of the above. Let <math>x = \angle EAB</math>; by alternate interior angles, <math>\angle DFA=60+x</math>. Let <math>a = EB</math> and the side of the equilateral triangle be <math>s</math>, so <math>s= \sqrt{a^2+121}</math> by the [[Pythagorean Theorem]]. Now <math>\frac{10}{s} = \sin(60+x)=  \sin {60} \cos x+ \cos {60} \sin x = \left(\frac{\sqrt{3}}2\right)\left(\frac{11}s\right)+\left(\frac 12\right)\left( \frac as \right)</math>. This reduces to <math>a=20-11\sqrt{3}</math>.
  
alternatively
+
Thus, the area of the triangle is <math>\frac{s^2\sqrt{3}}{4} =(a^2+121)\frac{\sqrt{3}}{4}</math>, which yields the same answer as above.
 
 
Let angle EAB =x . then angle DFA=60+x.  Let the side of the equilateral triangle be s so s= (a^2+121)^ .5
 
 
 
therefore sinx=a/s  and sin(60+x)=10/s...
 
therfore 10/s =sin(60+x)=sin60cosx+cos60sinx =(3^.5/2)(11/s)+(1/2)(a/s)
 
multiplying both sides by 2s we get 20=11(3^.5)+a  so a=20-11(3^.5)
 
 
 
sustituting this into area=(a^2+121)(3^.5/4)  we get the desired answer
 
  
 
== See also ==
 
== See also ==

Revision as of 11:46, 25 July 2008

Problem

The sides of rectangle $ABCD$ have lengths $10$ and $11$. An equilateral triangle is drawn so that no point of the triangle lies outside $ABCD$. The maximum possible area of such a triangle can be written in the form $p\sqrt{q}-r$, where $p$, $q$, and $r$ are positive integers, and $q$ is not divisible by the square of any prime number. Find $p+q+r$.

Solution

Solution 1

Consider points on the complex plane $A (0,0),\ B (11,0),\ C (11,10),\ D (0,10)$. Since the rectangle is quite close to a square, we figure that the area of the equilateral triangle is maximized when a vertex of the triangle coincides with that of the rectangle. Set one vertex of the triangle at $A$, and the other two points $E$ and $F$ on $BC$ and $CD$, respectively. Let $E (11,a)$ and $F (b, 10)$. Since it's equilateral, then $E\cdot\text{cis}60^{\circ} = F$, so $(11 + ai)\left(\frac {1}{2} + \frac {\sqrt {3}}{2}i\right) = b + 10i$, and expanding we get $\left(\frac {11}{2} - \frac {a\sqrt {3}}{2}\right) + \left(\frac {11\sqrt {3}}{2} + \frac {a}{2}\right)i = b + 10i$.

1997 AIME-15a.PNG

We can then set the real and imaginary parts equal, and solve for $(a,b) = (20 - 11\sqrt {3},22 - 10\sqrt {3})$. Hence a side $s$ of the equilateral triangle can be found by $s^2 = AE^2 = a^2 + AB^2 = 884 - 440\sqrt{3}$. Using the area formula $\frac{s^2\sqrt{3}}{4}$, the area of the equilateral triangle is $\frac{(884-440\sqrt{3})\sqrt{3}}{4} = 221\sqrt{3} - 330$. Thus $p + q + r = 221 + 3 + 330 = \boxed{554}$.

Solution 2

This is a trigonometric re-statement of the above. Let $x = \angle EAB$; by alternate interior angles, $\angle DFA=60+x$. Let $a = EB$ and the side of the equilateral triangle be $s$, so $s= \sqrt{a^2+121}$ by the Pythagorean Theorem. Now $\frac{10}{s} = \sin(60+x)=  \sin {60} \cos x+ \cos {60} \sin x = \left(\frac{\sqrt{3}}2\right)\left(\frac{11}s\right)+\left(\frac 12\right)\left( \frac as \right)$. This reduces to $a=20-11\sqrt{3}$.

Thus, the area of the triangle is $\frac{s^2\sqrt{3}}{4} =(a^2+121)\frac{\sqrt{3}}{4}$, which yields the same answer as above.

See also

1997 AIME (ProblemsAnswer KeyResources)
Preceded by
Problem 14
Followed by
Last Question
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
All AIME Problems and Solutions