Difference between revisions of "1998 AHSME Problems/Problem 5"

(Created page with '<math>2^{1998} - 2^{1997} - 2^{1996} = 2^{1996}.</math> <math>2^{1996} + 2^{1995} = 2^{1995}(2 + 1) = 3 \cdot 2^{1995}.</math> So, the answer is <math>\text{(C)}.</math>')
 
Line 1: Line 1:
<math>2^{1998} - 2^{1997} - 2^{1996} = 2^{1996}.</math> <math>2^{1996} + 2^{1995} = 2^{1995}(2 + 1) = 3 \cdot 2^{1995}.</math> So, the answer is <math>\text{(C)}.</math>
+
== Problem 5 ==
 +
If <math>2^{1998}-2^{1997}-2^{1996}+2^{1995} = k \cdot 2^{1995},</math> what is the value of <math>k</math>?
 +
 
 +
<math> \mathrm{(A) \ } 1 \qquad \mathrm{(B) \ } 2 \qquad \mathrm{(C) \ } 3 \qquad \mathrm{(D) \ } 4 \qquad \mathrm{(E) \ } 5 </math>
 +
 +
== Solution ==
 +
<math>2^{1998} - 2^{1997} - 2^{1996} = 2^{1996}</math>. <math>2^{1996} + 2^{1995} = 2^{1995}(2 + 1) = 3 \cdot 2^{1995}</math>. So, the answer is <math>\text{(C)}.</math>
 +
 
 +
== See also ==
 +
{{AHSME box|year=1998|num-b=4|num-a=6}}

Revision as of 14:45, 6 June 2011

Problem 5

If $2^{1998}-2^{1997}-2^{1996}+2^{1995} = k \cdot 2^{1995},$ what is the value of $k$?

$\mathrm{(A) \ } 1 \qquad \mathrm{(B) \ } 2 \qquad \mathrm{(C) \ } 3 \qquad \mathrm{(D) \ } 4 \qquad \mathrm{(E) \ } 5$

Solution

$2^{1998} - 2^{1997} - 2^{1996} = 2^{1996}$. $2^{1996} + 2^{1995} = 2^{1995}(2 + 1) = 3 \cdot 2^{1995}$. So, the answer is $\text{(C)}.$

See also

1998 AHSME (ProblemsAnswer KeyResources)
Preceded by
Problem 4
Followed by
Problem 6
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
All AHSME Problems and Solutions