Difference between revisions of "2012 AMC 12B Problems/Problem 5"

(Created page with "==Problem== Two integers have a sum of 26. when two more integers are added to the first two, the sum is 41. Finally, when two more integers are added to the sum of the previous...")
 
Line 8: Line 8:
  
 
So, x+y=26, x could equal 15, and y could equal 11, so no even integers required here. 41-26=15. a+b=15, a could equal 9 and b could equal 6, so one even integer is required here. 57-41=16. m+n=16, m could equal 9 and n could equal 7, so no even integers required here, meaning only 1 even integer is required; A.
 
So, x+y=26, x could equal 15, and y could equal 11, so no even integers required here. 41-26=15. a+b=15, a could equal 9 and b could equal 6, so one even integer is required here. 57-41=16. m+n=16, m could equal 9 and n could equal 7, so no even integers required here, meaning only 1 even integer is required; A.
 +
== See Also ==
 +
 +
{{AMC12 box|year=2012|ab=B|num-b=4|num-a=6}}

Revision as of 21:50, 12 January 2013

Problem

Two integers have a sum of 26. when two more integers are added to the first two, the sum is 41. Finally, when two more integers are added to the sum of the previous 4 integers, the sum is 57. What is the minimum number of even integers among the 6 integers?


Solution

So, x+y=26, x could equal 15, and y could equal 11, so no even integers required here. 41-26=15. a+b=15, a could equal 9 and b could equal 6, so one even integer is required here. 57-41=16. m+n=16, m could equal 9 and n could equal 7, so no even integers required here, meaning only 1 even integer is required; A.

See Also

2012 AMC 12B (ProblemsAnswer KeyResources)
Preceded by
Problem 4
Followed by
Problem 6
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions