Difference between revisions of "2012 AIME I Problems/Problem 11"

(Created page with "==Problem 11== == Solution == == See also == {{AIME box|year=2012|n=I|num-b=10|num-a=12}}")
 
(Problem 11)
Line 1: Line 1:
 
==Problem 11==
 
==Problem 11==
 +
A frog begins at <math>P_0 = (0,0)</math> and makes a sequence of jumps according to the following rule: from <math>P_n = (x_n, y_n),</math> the frog jumps to <math>P_{n+1},</math> which may be any of the points <math>(x_n + 7, y_n + 2),</math> <math>(x_n + 2, y_n + 7),</math> <math>(x_n - 5, y_n - 10),</math> or <math>(x_n - 10, y_n - 5).</math> There are <math>M</math> points <math>(x, y)</math> with <math>|x| + |y| \le 100</math> that can be reached by a sequence of such jumps. Find the remainder when <math>M</math> is divided by <math>1000.</math>
  
 
== Solution ==
 
== Solution ==

Revision as of 00:27, 17 March 2012

Problem 11

A frog begins at $P_0 = (0,0)$ and makes a sequence of jumps according to the following rule: from $P_n = (x_n, y_n),$ the frog jumps to $P_{n+1},$ which may be any of the points $(x_n + 7, y_n + 2),$ $(x_n + 2, y_n + 7),$ $(x_n - 5, y_n - 10),$ or $(x_n - 10, y_n - 5).$ There are $M$ points $(x, y)$ with $|x| + |y| \le 100$ that can be reached by a sequence of such jumps. Find the remainder when $M$ is divided by $1000.$

Solution

See also

2012 AIME I (ProblemsAnswer KeyResources)
Preceded by
Problem 10
Followed by
Problem 12
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
All AIME Problems and Solutions