Difference between revisions of "1974 AHSME Problems/Problem 22"

(See Also)
 
Line 12: Line 12:
 
{{AHSME box|year=1974|num-b=21|num-a=23}}
 
{{AHSME box|year=1974|num-b=21|num-a=23}}
 
[[Category:Introductory Algebra Problems]]
 
[[Category:Introductory Algebra Problems]]
 +
{{MAA Notice}}

Latest revision as of 11:43, 5 July 2013

Problem

The minimum of $\sin\frac{A}{2}-\sqrt{3}\cos\frac{A}{2}$ is attained when $A$ is

$\mathrm{(A)\ } -180^\circ \qquad \mathrm{(B) \ }60^\circ \qquad \mathrm{(C) \  } 120^\circ \qquad \mathrm{(D) \  } 0^\circ \qquad \mathrm{(E) \  }\text{none of these}$

Solution

Define a new number $B$ such that $\cos(B)=\frac{1}{2}$ and $\sin(B)=-\frac{\sqrt{3}}{2}$. Notice that $B=\frac{5\pi}{3}$. Therefore, we have $\sin\frac{A}{2}-\sqrt{3}\cos\frac{A}{2}= 2\cos(B)\sin\left(\frac{A}{2}\right)+2\sin(B)\cos\left(\frac{A}{2}\right)$.

Recognizing the angle sum formula, we can rewrite this as $\sin\frac{A}{2}-\sqrt{3}\cos\frac{A}{2}=2\sin\left(\frac{A}{2}+B\right)$. We can now clearly see that the minimum is $-2$, and this is achieved when $\frac{A}{2}+B=\frac{3\pi}{2}$. Plugging in $B=\frac{5\pi}{3}$, we get $\frac{A}{2}=-\frac{\pi}{6}\implies A=-\frac{\pi}{3}=-60^\circ$. $\boxed{\text{E}}$

See Also

1974 AHSME (ProblemsAnswer KeyResources)
Preceded by
Problem 21
Followed by
Problem 23
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
All AHSME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png