Difference between revisions of "2012 AIME I Problems/Problem 1"
Mrdavid445 (talk | contribs) |
m (→Solution 2) |
||
Line 10: | Line 10: | ||
=== Solution 2 === | === Solution 2 === | ||
− | A number is divisible by four if its last two digits are divisible by 4. Thus, we require that <math> 10b + a </math> and <math> 10b + c</math> are both divisible by <math> 4 </math>. If <math> b </math> is odd, then <math> a </math> and <math> c </math> must both be <math> 2 \pmod 4 </math> meaning that <math> a </math> and <math> c </math> are <math> 2 </math> or <math> 6 </math>. If <math> b </math> is even, then <math> a </math> and <math> c </math> must be <math> 0 \pmod 4 </math> meaning that <math> a </math> and <math> c </math> are <math> 4 </math> or <math> 8 </math>. For each choice of <math> b </math> there are <math> 2 </math> choices for <math> a </math> and <math> 2 </math> for <math> c </math> for a total of <math> 10 \cdot 2 \cdot 2 = 040 </math> numbers. | + | A number is divisible by four if its last two digits are divisible by 4. Thus, we require that <math> 10b + a </math> and <math> 10b + c</math> are both divisible by <math> 4 </math>. If <math> b </math> is odd, then <math> a </math> and <math> c </math> must both be <math> 2 \pmod 4 </math> meaning that <math> a </math> and <math> c </math> are <math> 2 </math> or <math> 6 </math>. If <math> b </math> is even, then <math> a </math> and <math> c </math> must be <math> 0 \pmod 4 </math> meaning that <math> a </math> and <math> c </math> are <math> 4 </math> or <math> 8 </math>. For each choice of <math> b </math> there are <math> 2 </math> choices for <math> a </math> and <math> 2 </math> for <math> c </math> for a total of <math> 10 \cdot 2 \cdot 2 = \boxed{040} </math> numbers. |
== See also == | == See also == | ||
{{AIME box|year=2012|n=I|before=First Problem|num-a=2}} | {{AIME box|year=2012|n=I|before=First Problem|num-a=2}} |
Revision as of 21:13, 9 December 2012
Problem 1
Find the number of positive integers with three not necessarily distinct digits, , with and such that both and are multiples of .
Solutions
Solution 1
A positive integer is divisible by if and only if its last two digits are divisible by For any value of , there are two possible values for and , since we find that if is even, and must be either or , and if is odd, and must be either or . There are thus ways to choose and for each and ways to choose since can be any digit. The final answer is then
Solution 2
A number is divisible by four if its last two digits are divisible by 4. Thus, we require that and are both divisible by . If is odd, then and must both be meaning that and are or . If is even, then and must be meaning that and are or . For each choice of there are choices for and for for a total of numbers.
See also
2012 AIME I (Problems • Answer Key • Resources) | ||
Preceded by First Problem |
Followed by Problem 2 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |