Difference between revisions of "2005 AMC 10A Problems/Problem 19"
Rachanamadhu (talk | contribs) (→See Also) |
|||
Line 30: | Line 30: | ||
==See Also== | ==See Also== | ||
− | |||
− | + | {{AMC10 box|year=2005|ab=A|num-b=22|num-a=24}} | |
− | + | [[Category:Introductory Geometry Problems]] | |
+ | [[Category:Area Ratio Problems]] | ||
{{MAA Notice}} | {{MAA Notice}} |
Revision as of 23:35, 2 June 2015
Problem
Three one-inch squares are placed with their bases on a line. The center square is lifted out and rotated 45 degrees, as shown. Then it is centered and lowered into its original location until it touches both of the adjoining squares. How many inches is the point from the line on which the bases of the original squares were placed?
Solution
Consider the rotated middle square shown in the figure. It will drop until length is 1 inch. Then, because is a triangle, , and . We know that , so the distance from to the line is
See Also
2005 AMC 10A (Problems • Answer Key • Resources) | ||
Preceded by Problem 22 |
Followed by Problem 24 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AMC 10 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.