Difference between revisions of "2013 AIME II Problems/Problem 15"

(Solutions)
Line 42: Line 42:
  
 
Similarily, we have <math>\sin A =\dfrac{2}{3}</math> and <math>\cos A=\sqrt{\dfrac{14}{9}-1}=\sqrt{\dfrac{5}{9}}</math> and the rest of the solution proceeds as above.
 
Similarily, we have <math>\sin A =\dfrac{2}{3}</math> and <math>\cos A=\sqrt{\dfrac{14}{9}-1}=\sqrt{\dfrac{5}{9}}</math> and the rest of the solution proceeds as above.
 +
 +
===Solution 3===
 +
 +
Let
 +
<cmath> \begin{align*}
 +
\cos^2 A + \cos^2 B + 2 \sin A \sin B \cos C &= \frac{15}{8} \text{    ------ (1)}\
 +
\cos^2 B + \cos^2 C + 2 \sin B \sin C \cos A &= \frac{14}{9} \text{    ------ (2)}\
 +
\cos^2 C + \cos^2 A + 2 \sin C \sin A \cos B &= x \text{                        ------ (3)}\
 +
\end{align*} </cmath>
 +
 +
Adding (1) and (3) we get:
 +
<cmath> 2 \cos^2 A + \cos^2 B + \cos^2 C + 2 \sin A( \sin B \cos C +  \sin C \cos B)  = \frac{15}{8} + x</cmath>  or
 +
<cmath> 2 \cos^2 A + \cos^2 B + \cos^2 C + 2 \sin A \sin (B+C)  = \frac{15}{8} + x</cmath>    or
 +
<cmath> 2 \cos^2 A + \cos^2 B + \cos^2 C + 2 \sin ^2 A = \frac{15}{8} + x</cmath>    or
 +
<cmath> \cos^2 B + \cos^2 C =  x - \frac{1}{8}    --- (4)</cmath>
 +
 +
Similarly adding (2) and (3) we get:
 +
<cmath> \cos^2 A + \cos^2 B =  x - \frac{4}{9}    --- (5) </cmath>
 +
Similarly adding (1) and (2) we get:
 +
<cmath> \cos^2 A + \cos^2 C =  \frac{14}{9}  - \frac{1}{8}    --- (6) </cmath>
 +
 +
And (4) - (5) gives:
 +
<cmath> \cos^2 C - \cos^2 A =  \frac{4}{9}  - \frac{1}{8}    --- (7) </cmath>
 +
 +
Now (6) - (7) gives:
 +
<math> \cos^2 A  =  \frac{5}{9} </math> or
 +
<math>\cos A = \sqrt{\dfrac{5}{9}}</math> and <math>\sin A = \frac{2}{3} </math>
 +
so <math>\cos C</math> is <math>\sqrt{\dfrac{7}{8}}</math> and therefore <math> \sin C</math> is <math>\sqrt{\dfrac{1}{8}}</math>
 +
 +
Now <math>\sin B = \sin(A+C)</math> can be computed first and then <math>\cos^2 B</math> is easily found.
 +
 +
Thus <math>\cos^2 B</math> and <math>\cos^2 C</math> can be plugged into (4) above to give x =  <math>\dfrac{111-4\sqrt{35}}{72}</math>.
 +
 +
Hence the answer is = <math>111+4+35+72 = \boxed{222}</math>.
 +
 +
Kris17
  
 
==See Also==
 
==See Also==
 
{{AIME box|year=2013|n=II|num-b=14|after=Last Problem}}
 
{{AIME box|year=2013|n=II|num-b=14|after=Last Problem}}
 
{{MAA Notice}}
 
{{MAA Notice}}

Revision as of 22:07, 17 November 2014

Problem 15

Let $A,B,C$ be angles of an acute triangle with \begin{align*} \cos^2 A + \cos^2 B + 2 \sin A \sin B \cos C &= \frac{15}{8} \text{ and} \\ \cos^2 B + \cos^2 C + 2 \sin B \sin C \cos A &= \frac{14}{9} \end{align*} There are positive integers $p$, $q$, $r$, and $s$ for which \[\cos^2 C + \cos^2 A + 2 \sin C \sin A \cos B = \frac{p-q\sqrt{r}}{s},\] where $p+q$ and $s$ are relatively prime and $r$ is not divisible by the square of any prime. Find $p+q+r+s$.

Solutions

Solution 1

Let's draw the triangle. Since the problem only deals with angles, we can go ahead and set one of the sides to a convenient value. Let $BC = \sin{A}$.

By the Law of Sines, we must have $CA = \sin{B}$ and $AB = \sin{C}$.

Now let us analyze the given:

\begin{align*}
\cos^2A + \cos^2B + 2\sinA\sinB\cosC &= 1-\sin^2A + 1-\sin^2B + 2\sinA\sinB\cosC \\
&= 2-(\sin^2A + \sin^2B - 2\sinA\sinB\cosC)
\end{align*} (Error compiling LaTeX. Unknown error_msg)

Now we can use the Law of Cosines to simplify this:

\[= 2-\sin^2C\]


Therefore: \[\sin C = \sqrt{\dfrac{1}{8}},\cos C = \sqrt{\dfrac{7}{8}}.\] Similarly, \[\sin A = \sqrt{\dfrac{4}{9}},\cos A = \sqrt{\dfrac{5}{9}}.\] Note that the desired value is equivalent to $2-\sin^2B$, which is $2-\sin^2(A+C)$. All that remains is to use the sine addition formula and, after a few minor computations, we obtain a result of $\dfrac{111-4\sqrt{35}}{72}$. Thus, the answer is $111+4+35+72 = \boxed{222}$.


Solution 2

Let us use the identity $\cos^2A+\cos^2B+\cos^2C+2\cos A \cos B \cos C=1$ .

Add \begin{align*} \cos^2 C+2(\cos A\cos B-\sin A \sin B)\cos C \end{align*} to both sides of the first given equation.



Thus, as \begin{align*} \cos A\cos B-\sin A\sin B=\cos (A+B)=-\cos C ,\end{align*} we have \begin{align*} \dfrac{15}{8}-2\cos^2 C +\cos^2 C=1,  \end{align*} so $\cos C$ is $\sqrt{\dfrac{7}{8}}$ and therefore $\sin C$ is $\sqrt{\dfrac{1}{8}}$.

Similarily, we have $\sin A =\dfrac{2}{3}$ and $\cos A=\sqrt{\dfrac{14}{9}-1}=\sqrt{\dfrac{5}{9}}$ and the rest of the solution proceeds as above.

Solution 3

Let \begin{align*} \cos^2 A + \cos^2 B + 2 \sin A \sin B \cos C &= \frac{15}{8} \text{     ------ (1)}\\ \cos^2 B + \cos^2 C + 2 \sin B \sin C \cos A &= \frac{14}{9} \text{     ------ (2)}\\ \cos^2 C + \cos^2 A + 2 \sin C \sin A \cos B &= x \text{                        ------ (3)}\\ \end{align*}

Adding (1) and (3) we get: \[2 \cos^2 A + \cos^2 B + \cos^2 C + 2 \sin A( \sin B \cos C +  \sin C \cos B)  = \frac{15}{8} + x\] or \[2 \cos^2 A + \cos^2 B + \cos^2 C + 2 \sin A \sin (B+C)  = \frac{15}{8} + x\] or \[2 \cos^2 A + \cos^2 B + \cos^2 C + 2 \sin ^2 A = \frac{15}{8} + x\] or \[\cos^2 B + \cos^2 C =  x - \frac{1}{8}     --- (4)\]

Similarly adding (2) and (3) we get: \[\cos^2 A + \cos^2 B =  x - \frac{4}{9}     --- (5)\] Similarly adding (1) and (2) we get: \[\cos^2 A + \cos^2 C =  \frac{14}{9}  - \frac{1}{8}     --- (6)\]

And (4) - (5) gives: \[\cos^2 C - \cos^2 A =  \frac{4}{9}  - \frac{1}{8}    --- (7)\]

Now (6) - (7) gives: $\cos^2 A  =  \frac{5}{9}$ or $\cos A = \sqrt{\dfrac{5}{9}}$ and $\sin A = \frac{2}{3}$ so $\cos C$ is $\sqrt{\dfrac{7}{8}}$ and therefore $\sin C$ is $\sqrt{\dfrac{1}{8}}$

Now $\sin B = \sin(A+C)$ can be computed first and then $\cos^2 B$ is easily found.

Thus $\cos^2 B$ and $\cos^2 C$ can be plugged into (4) above to give x = $\dfrac{111-4\sqrt{35}}{72}$.

Hence the answer is = $111+4+35+72 = \boxed{222}$.

Kris17

See Also

2013 AIME II (ProblemsAnswer KeyResources)
Preceded by
Problem 14
Followed by
Last Problem
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
All AIME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png