Difference between revisions of "2012 AIME I Problems/Problem 10"
(→Solution) |
|||
Line 3: | Line 3: | ||
Let <math>\mathcal{S}</math> be the set of all perfect squares whose rightmost three digits in base <math>10</math> are <math>256</math>. Let <math>\mathcal{T}</math> be the set of all numbers of the form <math>\frac{x-256}{1000}</math>, where <math>x</math> is in <math>\mathcal{S}</math>. In other words, <math>\mathcal{T}</math> is the set of numbers that result when the last three digits of each number in <math>\mathcal{S}</math> are truncated. Find the remainder when the tenth smallest element of <math>\mathcal{T}</math> is divided by <math>1000</math>. | Let <math>\mathcal{S}</math> be the set of all perfect squares whose rightmost three digits in base <math>10</math> are <math>256</math>. Let <math>\mathcal{T}</math> be the set of all numbers of the form <math>\frac{x-256}{1000}</math>, where <math>x</math> is in <math>\mathcal{S}</math>. In other words, <math>\mathcal{T}</math> is the set of numbers that result when the last three digits of each number in <math>\mathcal{S}</math> are truncated. Find the remainder when the tenth smallest element of <math>\mathcal{T}</math> is divided by <math>1000</math>. | ||
− | == Solution == | + | == Solution 1== |
It is apparent that for a perfect square <math>s^2</math> to satisfy the constraints, we must have <math>s^2 - 256 = 1000n</math> or <math>(s+16)(s-16) = 1000n.</math> Now in order for <math>(s+16)(s-16)</math> to be a multiple of <math>1000,</math> at least one of <math>s+16</math> and <math>s-16</math> must be a multiple of <math>5,</math> and since <math>s+16</math> and <math>s-16</math> are in different residue classes mod <math>5,</math> one term must have all the factors of <math>5</math> and thus must be a multiple of <math>125.</math> Furthermore, each of <math>s+16</math> and <math>s-16</math> must have at least two factors of <math>2,</math> since otherwise <math>(s+16)(s-16)</math> could not possibly be divisible by <math>8.</math> So therefore the conditions are satisfied if either <math>s+16</math> or <math>s-16</math> is divisible by <math>500,</math> or equivalently if <math>s = 500n \pm 16.</math> Counting up from <math>n=0</math> to <math>n=5,</math> we see that the tenth value of <math>s</math> is <math>500 \cdot 5 - 16 = 2484</math> and thus the corresponding element in <math>\mathcal{T}</math> is <math>\frac{2484^2 - 256}{1000} = 6170 \rightarrow \boxed{170.}</math> | It is apparent that for a perfect square <math>s^2</math> to satisfy the constraints, we must have <math>s^2 - 256 = 1000n</math> or <math>(s+16)(s-16) = 1000n.</math> Now in order for <math>(s+16)(s-16)</math> to be a multiple of <math>1000,</math> at least one of <math>s+16</math> and <math>s-16</math> must be a multiple of <math>5,</math> and since <math>s+16</math> and <math>s-16</math> are in different residue classes mod <math>5,</math> one term must have all the factors of <math>5</math> and thus must be a multiple of <math>125.</math> Furthermore, each of <math>s+16</math> and <math>s-16</math> must have at least two factors of <math>2,</math> since otherwise <math>(s+16)(s-16)</math> could not possibly be divisible by <math>8.</math> So therefore the conditions are satisfied if either <math>s+16</math> or <math>s-16</math> is divisible by <math>500,</math> or equivalently if <math>s = 500n \pm 16.</math> Counting up from <math>n=0</math> to <math>n=5,</math> we see that the tenth value of <math>s</math> is <math>500 \cdot 5 - 16 = 2484</math> and thus the corresponding element in <math>\mathcal{T}</math> is <math>\frac{2484^2 - 256}{1000} = 6170 \rightarrow \boxed{170.}</math> | ||
+ | |||
+ | == Solution 2== | ||
+ | Notice that is <math>16^2=256</math>, <math>1016^2</math> ends in <math>256</math>. In general, if <math>x^2</math> ends in <math>256</math>, <math>(x+1000)^2=x^2+2000x+1000000</math> ends in 256 because <math>2000x >1000</math> and <math>2000000 > 1000</math>. It is clear that we want all numbers whose squares end in <math>256</math> that are less than <math>1000</math>. | ||
+ | |||
+ | Firstly, we know the number has to end in a <math>4</math> or a <math>6</math>. Let's look at the ones ending in <math>6</math>. | ||
+ | |||
+ | Assume that the second digit of the three digit number is <math>0</math>. We find that the last <math>3</math> digits of <math>\overline{a06}^2</math> is in the form <math>12a \cdot 100 + 3 \cdot 10 + 6</math>. However, the last two digits need to be a <math>56</math>. Thus, similarly trying all numbers from <math>0</math> to <math>10</math>, we see that only 1 for the middle digit works. Carrying out the multiplication, we see that the last <math>3</math> digits of <math>\overline{a06}^2</math> is in the form <math>(12a + 2) \cdot 100 + 5 \cdot 10 + 6</math>. We want <math>(12a + 2)\pmod{10}</math> to be equal to <math>2</math>. Thus, we see that a is <math>0</math> or <math>5</math>. Thus, the numbers that work in this case are <math>016</math> and <math>516</math>. | ||
+ | |||
+ | Next, let's look at the ones ending in <math>4</math>. Carrying out a similar technique as above, we see that the last <math>3</math> digits of <math>\overline{a84}^2</math> is in the form <math>((8a+10) \cdot 100+ 5 \cdot 10 + 6</math>. We want <math>(8a + 10)\pmod{10}</math> to be equal to <math>2</math>. We see that only <math>4</math> and <math>9</math> work. Thus, we see that only <math>484</math> and <math>984</math> work. | ||
+ | |||
+ | We order these numbers to get <math>16</math>, <math>484</math>, <math>516</math> <math>984</math>. We want the <math>10th</math> number in order which is <math>2484^2 = 6170256</math>. <math>\boxed{170}</math> | ||
== See also == | == See also == | ||
{{AIME box|year=2012|n=I|num-b=9|num-a=11}} | {{AIME box|year=2012|n=I|num-b=9|num-a=11}} | ||
{{MAA Notice}} | {{MAA Notice}} |
Revision as of 14:57, 6 July 2015
Contents
[hide]Problem 10
Let be the set of all perfect squares whose rightmost three digits in base
are
. Let
be the set of all numbers of the form
, where
is in
. In other words,
is the set of numbers that result when the last three digits of each number in
are truncated. Find the remainder when the tenth smallest element of
is divided by
.
Solution 1
It is apparent that for a perfect square to satisfy the constraints, we must have
or
Now in order for
to be a multiple of
at least one of
and
must be a multiple of
and since
and
are in different residue classes mod
one term must have all the factors of
and thus must be a multiple of
Furthermore, each of
and
must have at least two factors of
since otherwise
could not possibly be divisible by
So therefore the conditions are satisfied if either
or
is divisible by
or equivalently if
Counting up from
to
we see that the tenth value of
is
and thus the corresponding element in
is
Solution 2
Notice that is ,
ends in
. In general, if
ends in
,
ends in 256 because
and
. It is clear that we want all numbers whose squares end in
that are less than
.
Firstly, we know the number has to end in a or a
. Let's look at the ones ending in
.
Assume that the second digit of the three digit number is . We find that the last
digits of
is in the form
. However, the last two digits need to be a
. Thus, similarly trying all numbers from
to
, we see that only 1 for the middle digit works. Carrying out the multiplication, we see that the last
digits of
is in the form
. We want
to be equal to
. Thus, we see that a is
or
. Thus, the numbers that work in this case are
and
.
Next, let's look at the ones ending in . Carrying out a similar technique as above, we see that the last
digits of
is in the form
. We want
to be equal to
. We see that only
and
work. Thus, we see that only
and
work.
We order these numbers to get ,
,
. We want the
number in order which is
.
See also
2012 AIME I (Problems • Answer Key • Resources) | ||
Preceded by Problem 9 |
Followed by Problem 11 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.