Difference between revisions of "2000 AIME II Problems/Problem 1"
(→Solution) |
|||
Line 5: | Line 5: | ||
== Solution == | == Solution == | ||
+ | === Solution 1 === | ||
<math>\frac 2{\log_4{2000^6}} + \frac 3{\log_5{2000^6}}</math> | <math>\frac 2{\log_4{2000^6}} + \frac 3{\log_5{2000^6}}</math> | ||
Line 18: | Line 19: | ||
Therefore, <math> m+n=1+6=\boxed{007}</math> | Therefore, <math> m+n=1+6=\boxed{007}</math> | ||
+ | |||
+ | === Solution 2 === | ||
+ | |||
+ | Alternatively, we could've noted that, because <math>\frac 1{\log_a{b}} = \log_b{a}</math> | ||
+ | |||
+ | <cmath>\frac 2{\log_4{2000^6}} + \frac 3{\log_5{2000^6}} = </cmath> <cmath>2 \cdot \frac{1}{\log_4{2000^6}} + 3\cdot \frac {1}{\log_5{2000^6} }= </cmath> | ||
+ | |||
+ | <cmath>2{\log_{2000^6}{4}} + 3{\log_{2000^6}{5}} = </cmath> <cmath>{\log_{2000^6}{4^2}} + {\log_{2000^6}{5^3}} = </cmath> <cmath>{\log_{2000^6}{4^2 \cdot 5^3} = </cmath> | ||
+ | |||
+ | <cmath>{\log_{2000^6}{2000} = {\frac{1}{6}}</cmath> | ||
+ | |||
+ | Therefore our answer is <math>1 + 6 = \boxed{7}</math> | ||
+ | |||
{{AIME box|year=2000|n=II|before=First Question|num-a=2}} | {{AIME box|year=2000|n=II|before=First Question|num-a=2}} | ||
{{MAA Notice}} | {{MAA Notice}} |
Revision as of 21:20, 30 December 2014
Contents
Problem
The number
can be written as where and are relatively prime positive integers. Find .
Solution
Solution 1
Therefore,
Solution 2
Alternatively, we could've noted that, because
\[{\log_{2000^6}{4^2 \cdot 5^3} =\] (Error compiling LaTeX. Unknown error_msg)
\[{\log_{2000^6}{2000} = {\frac{1}{6}}\] (Error compiling LaTeX. Unknown error_msg)
Therefore our answer is
2000 AIME II (Problems • Answer Key • Resources) | ||
Preceded by First Question |
Followed by Problem 2 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.