Difference between revisions of "2014 AIME I Problems"
(→Problem 6) |
(→Problem 4) |
||
Line 18: | Line 18: | ||
==Problem 4== | ==Problem 4== | ||
− | + | Jon and Steve ride their bicycles along a path that parallels two side-by-side train tracks running the east/west direction. Jon rides east as 20 miles per hour, and Steve rides west at 20 miles per hour. Two trains of equal length, traveling in opposite directions at constant but different speeds each pass the two riders. Each train takes exactly 1 minute to go past Jon. The westbound train takes 10 times as long as the eastbound train to go past Steve. The length of each train is <math>\frac{m}{n}</math>, where <math>m</math> and <math>n</math> are relatively prime positive integers. Find <math>m+n</math>. | |
[[2014 AIME I Problems/Problem 4|Solution]] | [[2014 AIME I Problems/Problem 4|Solution]] |
Revision as of 11:36, 14 March 2014
2014 AIME I (Answer Key) | AoPS Contest Collections • PDF | ||
Instructions
| ||
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 |
Contents
Problem 1
Problem 2
An urn contains green balls and blue balls. A second urn contains green balls and blue balls. A single ball is drawn at random from each urn. The probability that both balls are of the same color is 0.58. Find .
Problem 3
Find the number of rational numbers such that when is written as a fraction in lowest terms, the numerator and the denominator have a sum of 1000.
Problem 4
Jon and Steve ride their bicycles along a path that parallels two side-by-side train tracks running the east/west direction. Jon rides east as 20 miles per hour, and Steve rides west at 20 miles per hour. Two trains of equal length, traveling in opposite directions at constant but different speeds each pass the two riders. Each train takes exactly 1 minute to go past Jon. The westbound train takes 10 times as long as the eastbound train to go past Steve. The length of each train is , where and are relatively prime positive integers. Find .
Problem 5
Problem 6
The graphs and have y-intercepts of 2013 and 2014, respectively, and each graph has two positive integer x-intercepts. Find .
Problem 7
Problem 8
Problem 9
Problem 10
Problem 11
Problem 12
Problem 13
Problem 14
Problem 15
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.