Difference between revisions of "2014 AIME I Problems/Problem 4"

Line 1: Line 1:
 
== Problem 4 ==
 
== Problem 4 ==
 +
Jon and Steve ride their bicycles along a path that parallels two side-by-side train tracks running the east/west direction. Jon rides east at <math>20</math> miles per hour, and Steve rides west at <math>20</math> miles per hour. Two trains of equal length, traveling in opposite directions at constant but different speeds each pass the two riders. Each train takes exactly <math>1</math> minute to go past Jon. The westbound train takes <math>10</math> times as long as the eastbound train to go past Steve. The length of each train is <math>\frac{m}{n}</math>, where <math>m</math> and <math>n</math> are relatively prime positive integers. Find <math>m+n</math>.
  
 
== Solution ==
 
== Solution ==

Revision as of 18:48, 14 March 2014

Problem 4

Jon and Steve ride their bicycles along a path that parallels two side-by-side train tracks running the east/west direction. Jon rides east at $20$ miles per hour, and Steve rides west at $20$ miles per hour. Two trains of equal length, traveling in opposite directions at constant but different speeds each pass the two riders. Each train takes exactly $1$ minute to go past Jon. The westbound train takes $10$ times as long as the eastbound train to go past Steve. The length of each train is $\frac{m}{n}$, where $m$ and $n$ are relatively prime positive integers. Find $m+n$.

Solution

See also

2014 AIME I (ProblemsAnswer KeyResources)
Preceded by
Problem 3
Followed by
Problem 5
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
All AIME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png