Difference between revisions of "1952 AHSME Problems/Problem 47"

(Created page with "== Problem == In the set of equations <math>z^x = y^{2x},\quad 2^z = 2\cdot4^x, \quadx + y + z = 16</math>, the integral roots in the order <math>x,y,z</math> are: <math>\tex...")
 
m (Problem)
Line 1: Line 1:
 
== Problem ==
 
== Problem ==
  
In the set of equations <math>z^x = y^{2x},\quad  2^z = 2\cdot4^x, \quadx + y + z = 16</math>, the integral roots in the order <math>x,y,z</math> are:  
+
In the set of equations <math>z^x = y^{2x},\quad  2^z = 2\cdot4^x, \quad x + y + z = 16</math>, the integral roots in the order <math>x,y,z</math> are:  
  
 
<math>\textbf{(A) } 3,4,9 \qquad
 
<math>\textbf{(A) } 3,4,9 \qquad

Revision as of 17:43, 2 October 2014

Problem

In the set of equations $z^x = y^{2x},\quad  2^z = 2\cdot4^x, \quad x + y + z = 16$, the integral roots in the order $x,y,z$ are:

$\textbf{(A) } 3,4,9 \qquad \textbf{(B) } 9,-5,-12 \qquad \textbf{(C) } 12,-5,9 \qquad \textbf{(D) } 4,3,9 \qquad \textbf{(E) } 4,9,3$

Solution

$\fbox{}$

See also

1952 AHSC (ProblemsAnswer KeyResources)
Preceded by
Problem 46
Followed by
Problem 48
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
All AHSME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png