Difference between revisions of "1958 AHSME Problems/Problem 47"
(Created page with "== Problem == <math> ABCD</math> is a rectangle (see the accompanying diagram) with <math> P</math> any point on <math> \overline{AB}</math>. <math> \overline{PS} \perp \overline...") |
Quantummech (talk | contribs) (→Problem) |
||
Line 1: | Line 1: | ||
== Problem == | == Problem == | ||
− | <math> ABCD</math> is a rectangle (see the accompanying diagram) with <math> P</math> any point on <math> \overline{AB}</math>. <math> \overline{PS} \perp \overline{BD}</math> and <math> \overline{PR} \perp \overline{AC}</math>. <math> \overline{AF} \perp \overline{BD}</math> and <math> \overline{PQ} \perp \overline{AF}</math>. Then <math> PR | + | <math> ABCD</math> is a rectangle (see the accompanying diagram) with <math> P</math> any point on <math> \overline{AB}</math>. <math> \overline{PS} \perp \overline{BD}</math> and <math> \overline{PR} \perp \overline{AC}</math>. <math> \overline{AF} \perp \overline{BD}</math> and <math> \overline{PQ} \perp \overline{AF}</math>. Then <math> PR + PS</math> is equal to: |
<asy> | <asy> | ||
Line 15: | Line 15: | ||
<math> \textbf{(A)}\ PQ\qquad | <math> \textbf{(A)}\ PQ\qquad | ||
\textbf{(B)}\ AE\qquad | \textbf{(B)}\ AE\qquad | ||
− | \textbf{(C)}\ PT | + | \textbf{(C)}\ PT + AT\qquad |
\textbf{(D)}\ AF\qquad | \textbf{(D)}\ AF\qquad | ||
\textbf{(E)}\ EF</math> | \textbf{(E)}\ EF</math> | ||
− | |||
== Solution == | == Solution == |
Revision as of 07:38, 18 May 2016
Problem
is a rectangle (see the accompanying diagram) with any point on . and . and . Then is equal to:
Solution
See Also
1958 AHSC (Problems • Answer Key • Resources) | ||
Preceded by Problem 46 |
Followed by Problem 48 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 • 26 • 27 • 28 • 29 • 30 • 31 • 32 • 33 • 34 • 35 • 36 • 37 • 38 • 39 • 40 • 41 • 42 • 43 • 44 • 45 • 46 • 47 • 48 • 49 • 50 | ||
All AHSME Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.