Difference between revisions of "2012 AMC 12B Problems/Problem 10"

m (Problem)
m (Solution)
Line 7: Line 7:
 
==Solution==
 
==Solution==
  
The first curve is a circle with radius 5 centered at the origin, and the second curve is an ellipse with center (4,0) and end points of (-5,0) and (13,0). Finding points of intersection, we get (-5,0) (4,3) and (4,-3), forming a triangle with height of 9 and base of 6. So 9x6x0.5 =27 ; B.
+
The first curve is a circle with radius <math>5</math> centered at the origin, and the second curve is an ellipse with center <math>(4,0)</math> and end points of <math>(-5,0)</math> and <math>(13,0)</math>. Finding points of intersection, we get <math>(-5,0)</math>, <math>(4,3)</math>, and <math>(4,-3)</math>, forming a triangle with height of <math>9</math> and base of <math>6.</math> So the area of this triangle is <math>9 \cdot 6 \cdot 0.5 =27 \textbf{ (B)}.</math>
  
 
== See Also ==
 
== See Also ==

Revision as of 23:48, 13 January 2015

Problem

What is the area of the polygon whose vertices are the points of intersection of the curves $x^2 + y^2 =25$ and $(x-4)^2 + 9y^2 = 81 ?$

$\textbf{(A)}\ 24\qquad\textbf{(B)}\ 27\qquad\textbf{(C)}\ 36\qquad\textbf{(D)}\ 37.5\qquad\textbf{(E)}\ 42$

Solution

The first curve is a circle with radius $5$ centered at the origin, and the second curve is an ellipse with center $(4,0)$ and end points of $(-5,0)$ and $(13,0)$. Finding points of intersection, we get $(-5,0)$, $(4,3)$, and $(4,-3)$, forming a triangle with height of $9$ and base of $6.$ So the area of this triangle is $9 \cdot 6 \cdot 0.5 =27 \textbf{ (B)}.$

See Also

2012 AMC 12B (ProblemsAnswer KeyResources)
Preceded by
Problem 9
Followed by
Problem 11
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png