Difference between revisions of "2001 AMC 12 Problems/Problem 7"

(Problem)
m (Problem)
Line 5: Line 5:
 
A charity sells <math>140</math> benefit tickets for a total of <math>2001</math>. Some tickets sell for full price (a whole dollar amount), and the rest sells for half price. How much money is raised by the full-price tickets?
 
A charity sells <math>140</math> benefit tickets for a total of <math>2001</math>. Some tickets sell for full price (a whole dollar amount), and the rest sells for half price. How much money is raised by the full-price tickets?
  
<math>\text{(A) }</math> <dollar/><math>782\qquad \text{(B) }</math> <dollar/><math>986\qquad \text{(C) }</math> <dollar/><math>1158\qquad \text{(D) }</math> <dollar/><math>1219\qquad \text{(E) }</math> <dollar/><math>1449</math>
+
<math>\text{(A) } \textdollar 782 \qquad \text{(B) } \textdollar 986 \qquad \text{(C) } \textdollar 1158 \qquad \text{(D) } \textdollar 1219 \qquad \text{(E) }\ \textdollar 1449</math>
  
 
== Solution ==
 
== Solution ==

Revision as of 19:40, 13 June 2015

The following problem is from both the 2001 AMC 12 #7 and 2001 AMC 10A #14, so both problems redirect to this page.

Problem

A charity sells $140$ benefit tickets for a total of $2001$. Some tickets sell for full price (a whole dollar amount), and the rest sells for half price. How much money is raised by the full-price tickets?

$\text{(A) } \textdollar 782 \qquad \text{(B) } \textdollar 986 \qquad \text{(C) } \textdollar 1158 \qquad \text{(D) } \textdollar 1219 \qquad \text{(E) }\ \textdollar 1449$

Solution

Let's multiply ticket costs by $2$, then the half price becomes an integer, and the charity sold $140$ tickets worth a total of $4002$ dollars.

Let $h$ be the number of half price tickets, we then have $140-h$ full price tickets. The cost of $140-h$ full price tickets is equal to the cost of $280-2h$ half price tickets.

Hence we know that $h+(280-2h) = 280-h$ half price tickets cost $4002$ dollars. Then a single half price ticket costs $\frac{4002}{280-h}$ dollars, and this must be an integer. Thus $280-h$ must be a divisor of $4002$. Keeping in mind that $0\leq h\leq 140$, we are looking for a divisor between $140$ and $280$, inclusive.

The prime factorization of $4002$ is $4002=2\cdot 3\cdot 23\cdot 29$. We can easily find out that the only divisor of $4002$ within the given range is $2\cdot 3\cdot 29 = 174$.

This gives us $280-h=174$, hence there were $h=106$ half price tickets and $140-h = 34$ full price tickets.

In our modified setting (with prices multiplied by $2$) the price of a half price ticket is $\frac{4002}{174} = 23$. In the original setting this is the price of a full price ticket. Hence $23\cdot 34 = \boxed{(\text{A})782}$ dollars are raised by the full price tickets.

See Also

2001 AMC 12 (ProblemsAnswer KeyResources)
Preceded by
Problem 6
Followed by
Problem 8
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions
2001 AMC 10 (ProblemsAnswer KeyResources)
Preceded by
Problem 13
Followed by
Problem 15
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png