Difference between revisions of "2001 AMC 10 Problems/Problem 24"
(→Solution) |
m (→Solution: added in asy diagram) |
||
Line 8: | Line 8: | ||
==Solution== | ==Solution== | ||
+ | [asy] | ||
+ | /* Geogebra to Asymptote conversion, documentation at artofproblemsolving.com/Wiki, go to User:Azjps/geogebra */ | ||
+ | import graph; size(11.6cm); | ||
+ | real labelscalefactor = 0.5; /* changes label-to-point distance */ | ||
+ | pen dps = linewidth(0.7) + fontsize(10); defaultpen(dps); /* default pen style */ | ||
+ | pen dotstyle = black; /* point style */ | ||
+ | real xmin = -4.3, xmax = 7.3, ymin = -3.16, ymax = 6.3; /* image dimensions */ | ||
+ | /* draw figures */ | ||
+ | draw(circle((0.2,4.92), 1.3)); | ||
+ | draw(circle((1.04,1.58), 2.14)); | ||
+ | draw((-1.1,4.92)--(0.2,4.92)); | ||
+ | draw((0.2,4.92)--(1.04,1.58)); | ||
+ | draw((1.04,1.58)--(-1.1,1.58)); | ||
+ | draw((-1.1,1.58)--(-1.1,4.92)); | ||
+ | /* dots and labels */ | ||
+ | dot((-1.1,4.92),dotstyle); | ||
+ | label("<math>A</math>", (-1.02,5.12), NE * labelscalefactor); | ||
+ | dot((0.2,4.92),dotstyle); | ||
+ | label("<math>B</math>", (0.28,5.12), NE * labelscalefactor); | ||
+ | dot((-1.1,1.58),dotstyle); | ||
+ | label("<math>D</math>", (-1.02,1.78), NE * labelscalefactor); | ||
+ | dot((1.04,1.58),dotstyle); | ||
+ | label("<math>C</math>", (1.12,1.78), NE * labelscalefactor); | ||
+ | clip((xmin,ymin)--(xmin,ymax)--(xmax,ymax)--(xmax,ymin)--cycle); | ||
+ | /* end of picture */ | ||
+ | [\asy] | ||
If <math> AB=x </math> and <math> CD=y </math>,then <math> BC=x+y </math>. By the [[Pythagorean theorem]], we have <math> (x+y)^2=(y-x)^2+49 </math> Solving the equation, we get <math> 4xy=49 \implies xy = \boxed{\textbf{(B)}\ 12.25} </math>. | If <math> AB=x </math> and <math> CD=y </math>,then <math> BC=x+y </math>. By the [[Pythagorean theorem]], we have <math> (x+y)^2=(y-x)^2+49 </math> Solving the equation, we get <math> 4xy=49 \implies xy = \boxed{\textbf{(B)}\ 12.25} </math>. | ||
Revision as of 11:08, 1 December 2015
Problem
In trapezoid , and are perpendicular to , with , , and . What is ?
Solution
[asy]
/* Geogebra to Asymptote conversion, documentation at artofproblemsolving.com/Wiki, go to User:Azjps/geogebra */
import graph; size(11.6cm); real labelscalefactor = 0.5; /* changes label-to-point distance */ pen dps = linewidth(0.7) + fontsize(10); defaultpen(dps); /* default pen style */ pen dotstyle = black; /* point style */ real xmin = -4.3, xmax = 7.3, ymin = -3.16, ymax = 6.3; /* image dimensions */
/* draw figures */
draw(circle((0.2,4.92), 1.3)); draw(circle((1.04,1.58), 2.14)); draw((-1.1,4.92)--(0.2,4.92)); draw((0.2,4.92)--(1.04,1.58)); draw((1.04,1.58)--(-1.1,1.58)); draw((-1.1,1.58)--(-1.1,4.92));
/* dots and labels */
dot((-1.1,4.92),dotstyle); label("", (-1.02,5.12), NE * labelscalefactor); dot((0.2,4.92),dotstyle); label("", (0.28,5.12), NE * labelscalefactor); dot((-1.1,1.58),dotstyle); label("", (-1.02,1.78), NE * labelscalefactor); dot((1.04,1.58),dotstyle); label("", (1.12,1.78), NE * labelscalefactor); clip((xmin,ymin)--(xmin,ymax)--(xmax,ymax)--(xmax,ymin)--cycle);
/* end of picture */
[\asy] If and ,then . By the Pythagorean theorem, we have Solving the equation, we get .
See Also
2001 AMC 10 (Problems • Answer Key • Resources) | ||
Preceded by Problem 23 |
Followed by Problem 25 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AMC 10 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.