GET READY FOR THE AMC 10 WITH AoPS
Learn with outstanding instructors and top-scoring students from around the world in our AMC 10 Problem Series online course.
CHECK SCHEDULE

Difference between revisions of "2006 AMC 10B Problems"

(Problem 15: diagram needed)
(Problem 17)
Line 109: Line 109:
  
 
== Problem 17 ==
 
== Problem 17 ==
 +
Bob and Alice each have a bag that contains one ball of each of the colors blue, green, orange, red, and violet. Alice randomly selects one ball from her bag and puts it into Bob's bag. Bob then randomly selects one ball from his bag and puts it into Alice's bag. What is the probability that after this process the contents of the two bags are the same?
 +
 +
<math> \mathrm{(A) \ } \frac{1}{10}\qquad \mathrm{(B) \ } \frac{1}{6}\qquad \mathrm{(C) \ } \frac{1}{5}\qquad \mathrm{(D) \ } \frac{1}{3}\qquad \mathrm{(E) \ } \frac{1}{2} </math>
  
 
[[2006 AMC 12B Problems/Problem 17|Solution]]
 
[[2006 AMC 12B Problems/Problem 17|Solution]]

Revision as of 14:39, 13 July 2006

Problem 1

What is $(-1)^{1} + (-1)^{2} + ... + (-1)^{2006}$ ?

$\mathrm{(A) \ } -2006\qquad \mathrm{(B) \ } -1\qquad \mathrm{(C) \ } 0\qquad \mathrm{(D) \ } 1\qquad \mathrm{(E) \ } 2006$

Solution

Problem 2

For real numbers $x$ and $y$, define $x \spadesuit y = (x+y)(x-y)$. What is $3 \spadesuit (4 \spadesuit 5)$?

$\mathrm{(A) \ } -72\qquad \mathrm{(B) \ } -27\qquad \mathrm{(C) \ } -24\qquad \mathrm{(D) \ } 24\qquad \mathrm{(E) \ } 72$

Solution

Problem 3

A football game was played between two teams, the Cougars and the Panthers. The two teams scored a total of 34 points, and the Cougars won by a margin of 14 points. How many points did the Panthers score?

$\mathrm{(A) \ } 10\qquad \mathrm{(B) \ } 14\qquad \mathrm{(C) \ } 17\qquad \mathrm{(D) \ } 20\qquad \mathrm{(E) \ } 24$

Solution

Problem 4

Circles of diameter 1 inch and 3 inches have the same center. The smaller circle is painted red, and the portion outside the smaller circle and inside the larger circle is painted blue. What is the ratio of the blue-painted area to the red-painted area?

$\mathrm{(A) \ } 2\qquad \mathrm{(B) \ } 3\qquad \mathrm{(C) \ } 6\qquad \mathrm{(D) \ } 8\qquad \mathrm{(E) \ } 9$

Solution

Problem 5

A $2 \times 3$ rectangle and a $3 \times 4$ rectangle are contained within a square without overlapping at any point, and the sides of the square are parallel to the sides of the two given rectangles. What is the smallest possible area of the square?

$\mathrm{(A) \ } 16\qquad \mathrm{(B) \ } 25\qquad \mathrm{(C) \ } 36\qquad \mathrm{(D) \ } 49\qquad \mathrm{(E) \ } 64$

Solution

Problem 6

A region is bounded by semicircular arcs constructed on the side of a square whose sides measure $\frac{2}{\pi}$, as shown. What is the perimeter of this region?

$\mathrm{(A) \ } \frac{4}{\pi}\qquad \mathrm{(B) \ } 2\qquad \mathrm{(C) \ } \frac{8}{\pi}\qquad \mathrm{(D) \ } 4\qquad \mathrm{(E) \ } \frac{16}{\pi}$

Solution

Problem 7

Which of the folowing is equivalent to $\sqrt{\frac{x}{1-\frac{x-1}{x}}}$ when $x < 0$

$\mathrm{(A) \ } -x\qquad \mathrm{(B) \ } x\qquad \mathrm{(C) \ } 1\qquad \mathrm{(D) \ } \sqrt{\frac{x}{2}}\qquad \mathrm{(E) \ } x\sqrt{-1}$

Solution

Problem 8

A square of area 40 is inscribed in a semicircle as shown. What is the area of the semicircle?

$\mathrm{(A) \ } 20\pi\qquad \mathrm{(B) \ } 25\pi\qquad \mathrm{(C) \ } 30\pi\qquad \mathrm{(D) \ } 40\pi\qquad \mathrm{(E) \ } 50\pi$

Solution

Problem 9

Francesca uses 100 grams of lemon juce, 100 grams of sugar, and 400 grams of water to make lemonade. There are 25 calories in 100 grams of lemon juice and 386 calories in 100 grams of sugar. Water contains no calories. How many calories are in 200 grams of her lemonade?

$\mathrm{(A) \ } 129\qquad \mathrm{(B) \ } 137\qquad \mathrm{(C) \ } 174\qquad \mathrm{(D) \ } 233\qquad \mathrm{(E) \ } 411$

Solution

Problem 10

In a triangle with integer side lengths, one side is three times as long as a second side, and the length of the third side is 15. What is the greatest possible perimeter of the triangle?

$\mathrm{(A) \ } 43\qquad \mathrm{(B) \ } 44\qquad \mathrm{(C) \ } 45\qquad \mathrm{(D) \ } 46\qquad \mathrm{(E) \ } 47$

Solution

Problem 11

What is the tens digit in the sum $7!+8!+9!+...+2006!$

$\mathrm{(A) \ } 1\qquad \mathrm{(B) \ } 3\qquad \mathrm{(C) \ } 4\qquad \mathrm{(D) \ } 6\qquad \mathrm{(E) \ } 9$

Solution

Problem 12

The lines $x=\frac{1}{4}y+a$ and $y=\frac{1}{4}x+b$ intersect at the point $(1,2)$. What is $a+b$?

$\mathrm{(A) \ } 0\qquad \mathrm{(B) \ } \frac{3}{4}\qquad \mathrm{(C) \ } 1\qquad \mathrm{(D) \ } 2\qquad \mathrm{(E) \ } \frac{9}{4}$

Solution

Problem 13

Joe and JoAnn each bought 12 ounces of coffee in a 16 ounce cup. Joe drank 2 ounces of his coffee and then added 2 ounces of cream. JoAnn added 2 ounces of cream, stirred the coffee well, and then drank 2 ounces. What is the resulting ratio of the ammount of cream in Joe's coffee to that in JoAnn's coffee?

$\mathrm{(A) \ } \frac{6}{7}\qquad \mathrm{(B) \ } \frac{13}{14}\qquad \mathrm{(C) \ }1 \qquad \mathrm{(D) \ } \frac{14}{13}\qquad \mathrm{(E) \ } \frac{7}{6}$

Solution

Problem 14

Let $a$ and $b$ be the roots of the equation $x^2-mx+2=0$. Suppose that $a+(1/b)$ and $b+(1/a)$ are the roots of the equation $x^2-px+q=0$. What is $q$?

$\mathrm{(A) \ } \frac{5}{2}\qquad \mathrm{(B) \ } \frac{7}{2}\qquad \mathrm{(C) \ } 4\qquad \mathrm{(D) \ } \frac{9}{2}\qquad \mathrm{(E) \ } 8$

Solution

Problem 15

Rhombus $ABCD$ is similar to rhombus $BFDE$. The area of rhombus $ABCD$ is $24$ and $\angle BAD = 60^\circ$. What is the area of rhombus $BFDE$?

$\mathrm{(A) \ } 6\qquad \mathrm{(B) \ } 4\sqrt{3}\qquad \mathrm{(C) \ } 8\qquad \mathrm{(D) \ } 9\qquad \mathrm{(E) \ } 6\sqrt{3}$

Solution

Problem 16

Solution

Problem 17

Bob and Alice each have a bag that contains one ball of each of the colors blue, green, orange, red, and violet. Alice randomly selects one ball from her bag and puts it into Bob's bag. Bob then randomly selects one ball from his bag and puts it into Alice's bag. What is the probability that after this process the contents of the two bags are the same?

$\mathrm{(A) \ } \frac{1}{10}\qquad \mathrm{(B) \ } \frac{1}{6}\qquad \mathrm{(C) \ } \frac{1}{5}\qquad \mathrm{(D) \ } \frac{1}{3}\qquad \mathrm{(E) \ } \frac{1}{2}$

Solution

Problem 18

Solution

Problem 19

Solution

Problem 20

Solution

Problem 21

Solution

Problem 22

Solution

Problem 23

Solution

Problem 24

Solution

Problem 25

Solution

See also