Difference between revisions of "1983 AHSME Problems/Problem 25"

(Solution)
(See Also)
Line 19: Line 19:
 
Answer:<math>\fbox{\textbf{B}}</math>.
 
Answer:<math>\fbox{\textbf{B}}</math>.
 
==See Also==
 
==See Also==
{{AMC12 box|year=2014|ab=A|num-b=12|num-a=14}}
+
{{AHSME box|year=1983|ab=A|num-b=24 num-a=26}}
 
{{MAA Notice}}
 
{{MAA Notice}}

Revision as of 05:34, 18 May 2016

Problem 25

If $60^a=3$ and $60^b=5$, then $12^[(1-a-b)/2(1-b)]$ is

$\textbf{(A)}\ \sqrt{3}\qquad\textbf{(B)}\ 2\qquad\textbf{(C)}\ \sqrt{5}\qquad\textbf{(D)}\ 3\qquad\textbf{(E)}\ 2\sqrt{3}\qquad$

Solution

Since $12 = 60/5$, $12 = 60/(60^b)$= $60^{(1-b)}$

So we can rewrite $12^{[(1-a-b)/2(1-b)]}$ as $60^{[(1-b)(1-a-b)/2(1-b)]}$

this simplifies to $60^{[(1-a-b)/2]}$

which can be rewritten as $(60^{(1-a-b)})^{(1/2)}$

$60^{(1-a-b)} = 60^1/[(60^a)(60^b)] = 60/(3*5) = 4$

$4^{(1/2)} = 2$

Answer:$\fbox{\textbf{B}}$.

See Also

1983 AHSME (ProblemsAnswer KeyResources)
Preceded by
Problem 24 num-a=26
Followed by
[[1983 AHSME Problems/Problem {{{num-a}}}|Problem {{{num-a}}}]]
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
All AHSME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png