Difference between revisions of "2005 AMC 10A Problems/Problem 25"
Mathwiz0803 (talk | contribs) (→Solution (no trig)) |
Firebolt360 (talk | contribs) (→Solution (no trig)) |
||
Line 4: | Line 4: | ||
<math> \mathrm{(A) \ } \frac{266}{1521}\qquad \mathrm{(B) \ } \frac{19}{75}\qquad \mathrm{(C) \ } \frac{1}{3}\qquad \mathrm{(D) \ } \frac{19}{56}\qquad \mathrm{(E) \ } 1 </math> | <math> \mathrm{(A) \ } \frac{266}{1521}\qquad \mathrm{(B) \ } \frac{19}{75}\qquad \mathrm{(C) \ } \frac{1}{3}\qquad \mathrm{(D) \ } \frac{19}{56}\qquad \mathrm{(E) \ } 1 </math> | ||
− | ==Solution (no trig)== | + | ==Solution 1(no trig)== |
We have that | We have that | ||
<cmath>\frac{[ADE]}{[ABC]} = \frac{AD}{AB} \cdot \frac{AE}{AC} = \frac{19}{25} \cdot \frac{14}{42} = \frac{19}{75}.</cmath> | <cmath>\frac{[ADE]}{[ABC]} = \frac{AD}{AB} \cdot \frac{AE}{AC} = \frac{19}{25} \cdot \frac{14}{42} = \frac{19}{75}.</cmath> |
Revision as of 17:38, 21 August 2018
Problem
In we have , , and . Points and are on and respectively, with and . What is the ratio of the area of triangle to the area of the quadrilateral ?
Solution 1(no trig)
We have that
But , so The answer is therefore .
Solution (trig)
Using this formula:
Since the area of is equal to the area of minus the area of ,
.
Therefore, the desired ratio is
Note: was not used in this problem
See also
2005 AMC 10A (Problems • Answer Key • Resources) | ||
Preceded by Problem 24 |
Followed by Last Problem | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AMC 10 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.