Difference between revisions of "2017 AIME I Problems/Problem 10"

(Created page with "==Problem 10== Let <math>z_1=18+83i,~z_2=18+39i,</math> and <math>z_3=78+99i,</math> where <math>i=\sqrt{-1}.</math> Let <math>z</math> be the unique complex number with the p...")
 
m (Problem 10)
Line 1: Line 1:
 
==Problem 10==
 
==Problem 10==
Let <math>z_1=18+83i,~z_2=18+39i,</math> and <math>z_3=78+99i,</math> where <math>i=\sqrt{-1}.</math> Let <math>z</math> be the unique complex number with the properties that <math>\frac{z_3-z_1}{z_2-z_1}~\cdot~\frac{z-z_2}{z-z_3}</math> is a real number and the imaginary part of <math>z</math> is the greatest possible. Find the real part of <math>z</math>
+
Let <math>z_1=18+83i,~z_2=18+39i,</math> and <math>z_3=78+99i,</math> where <math>i=\sqrt{-1}.</math> Let <math>z</math> be the unique complex number with the properties that <math>\frac{z_3-z_1}{z_2-z_1}~\cdot~\frac{z-z_2}{z-z_3}</math> is a real number and the imaginary part of <math>z</math> is the greatest possible. Find the real part of <math>z</math>.
  
 
==Solution==
 
==Solution==

Revision as of 16:57, 8 March 2017

Problem 10

Let $z_1=18+83i,~z_2=18+39i,$ and $z_3=78+99i,$ where $i=\sqrt{-1}.$ Let $z$ be the unique complex number with the properties that $\frac{z_3-z_1}{z_2-z_1}~\cdot~\frac{z-z_2}{z-z_3}$ is a real number and the imaginary part of $z$ is the greatest possible. Find the real part of $z$.

Solution

See Also

2017 AIME I (ProblemsAnswer KeyResources)
Preceded by
Problem 7
Followed by
Problem 9
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
All AIME Problems and Solutions