Difference between revisions of "2018 AIME II Problems/Problem 14"
(Created page with "==Problem== The incircle <math>\omega</math> of triangle <math>ABC</math> is tangent to <math>\overline{BC}</math> at <math>X</math>. Let <math>Y \neq X</math> be the other i...") |
|||
Line 3: | Line 3: | ||
The incircle <math>\omega</math> of triangle <math>ABC</math> is tangent to <math>\overline{BC}</math> at <math>X</math>. Let <math>Y \neq X</math> be the other intersection of <math>\overline{AX}</math> with <math>\omega</math>. Points <math>P</math> and <math>Q</math> lie on <math>\overline{AB}</math> and <math>\overline{AC}</math>, respectively, so that <math>\overline{PQ}</math> is tangent to <math>\omega</math> at <math>Y</math>. Assume that <math>AP = 3</math>, <math>PB = 4</math>, <math>AC = 8</math>, and <math>AQ = \dfrac{m}{n}</math>, where <math>m</math> and <math>n</math> are relatively prime positive integers. Find <math>m+n</math>. | The incircle <math>\omega</math> of triangle <math>ABC</math> is tangent to <math>\overline{BC}</math> at <math>X</math>. Let <math>Y \neq X</math> be the other intersection of <math>\overline{AX}</math> with <math>\omega</math>. Points <math>P</math> and <math>Q</math> lie on <math>\overline{AB}</math> and <math>\overline{AC}</math>, respectively, so that <math>\overline{PQ}</math> is tangent to <math>\omega</math> at <math>Y</math>. Assume that <math>AP = 3</math>, <math>PB = 4</math>, <math>AC = 8</math>, and <math>AQ = \dfrac{m}{n}</math>, where <math>m</math> and <math>n</math> are relatively prime positive integers. Find <math>m+n</math>. | ||
+ | |||
+ | ==Solution 1== | ||
+ | Let sides <math>\overline{AB}</math> and <math>\overline{AC}</math> be tangent to <math>\omega</math> at <math>Z</math> and <math>W</math>, respectively. Let <math>\alpha = \angle BAX</math> and <math>\beta = \angle AXC</math>. Because <math>\overline{PQ}</math> and <math>\overline{BC}</math> are both tangent to <math>\omega</math> and <math>\angle YXC</math> and <math>\angle QYX</math> subtend the same arc of <math>\omega</math>, it follows that <math>\angle AYP = \angle QYX = \angle YXC = \beta</math>. By equal tangents, <math>PZ = PY</math>. Applying the Law of Sines to <math>\triangle APY</math> yields <cmath>\frac{AZ}{AP} = 1 + \frac{ZP}{AP} = 1 + \frac{PY}{AP} = 1 + \frac{\sin\alpha}{\sin\beta}.</cmath>Similarly, applying the Law of Sines to <math>\triangle ABX</math> gives <cmath>\frac{AZ}{AB} = 1 - \frac{BZ}{AB} = 1 - \frac{BX}{AB} = 1 - \frac{\sin\alpha}{\sin\beta}.</cmath>It follows that <cmath>2 = \frac{AZ}{AP} + \frac{AZ}{AB} = \frac{AZ}3 + \frac{AZ}7,</cmath>implying <math>AZ = \tfrac{21}5</math>. Applying the same argument to <math>\triangle AQY</math> yields <cmath>2 = \frac{AW}{AQ} + \frac{AW}{AC} = \frac{AZ}{AQ} + \frac{AZ}{AC} = \frac{21}5\left(\frac{1}{AQ} + \frac 18\right),</cmath>from which <math>AQ = \tfrac{168}{59}</math>. The requested sum is <math>168 + 59 = \boxed{227}</math>. | ||
+ | |||
+ | ==Solution 2 (Projective)== | ||
+ | Let sides <math>\overline{AB}</math> and <math>\overline{AC}</math> be tangent to <math>\omega</math> at <math>Z</math> and <math>W</math>, respectively. Let <math>\alpha = \angle BAX</math> and <math>\beta = \angle AXC</math>. Because <math>\overline{PQ}</math> and <math>\overline{BC}</math> are both tangent to <math>\omega</math> and <math>\angle YXC</math> and <math>\angle QYX</math> subtend the same arc of <math>\omega</math>, it follows that <math>\angle AYP = \angle QYX = \angle YXC = \beta</math>. By equal tangents, <math>PZ = PY</math>. Applying the Law of Sines to <math>\triangle APY</math> yields <cmath>\frac{AZ}{AP} = 1 + \frac{ZP}{AP} = 1 + \frac{PY}{AP} = 1 + \frac{\sin\alpha}{\sin\beta}.</cmath>Similarly, applying the Law of Sines to <math>\triangle ABX</math> gives <cmath>\frac{AZ}{AB} = 1 - \frac{BZ}{AB} = 1 - \frac{BX}{AB} = 1 - \frac{\sin\alpha}{\sin\beta}.</cmath>It follows that <cmath>2 = \frac{AZ}{AP} + \frac{AZ}{AB} = \frac{AZ}3 + \frac{AZ}7,</cmath>implying <math>AZ = \tfrac{21}5</math>. Applying the same argument to <math>\triangle AQY</math> yields <cmath>2 = \frac{AW}{AQ} + \frac{AW}{AC} = \frac{AZ}{AQ} + \frac{AZ}{AC} = \frac{21}5\left(\frac{1}{AQ} + \frac 18\right),</cmath>from which <math>AQ = \tfrac{168}{59}</math>. The requested sum is <math>168 + 59 = \boxed{227}</math>. | ||
+ | -Vfire | ||
{{AIME box|year=2018|n=II|num-b=13|num-a=15}} | {{AIME box|year=2018|n=II|num-b=13|num-a=15}} | ||
{{MAA Notice}} | {{MAA Notice}} |
Revision as of 07:16, 26 March 2018
Problem
The incircle of triangle is tangent to at . Let be the other intersection of with . Points and lie on and , respectively, so that is tangent to at . Assume that , , , and , where and are relatively prime positive integers. Find .
Solution 1
Let sides and be tangent to at and , respectively. Let and . Because and are both tangent to and and subtend the same arc of , it follows that . By equal tangents, . Applying the Law of Sines to yields Similarly, applying the Law of Sines to gives It follows that implying . Applying the same argument to yields from which . The requested sum is .
Solution 2 (Projective)
Let sides and be tangent to at and , respectively. Let and . Because and are both tangent to and and subtend the same arc of , it follows that . By equal tangents, . Applying the Law of Sines to yields Similarly, applying the Law of Sines to gives It follows that implying . Applying the same argument to yields from which . The requested sum is . -Vfire
2018 AIME II (Problems • Answer Key • Resources) | ||
Preceded by Problem 13 |
Followed by Problem 15 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.