Difference between revisions of "2018 AIME II Problems/Problem 9"
Line 1: | Line 1: | ||
==Problem== | ==Problem== | ||
− | Octagon <math>ABCDEFGH</math> with side lengths <math>AB = CD = EF = GH = 10</math> and <math>BC = DE = FG = HA = 11</math> is formed by removing 6-8-10 triangles from the corners of a <math>23</math> \times <math>27</math> rectangle with side <math>\overline{AH}</math> on a short side of the rectangle, as shown. Let <math>J</math> be the midpoint of <math>\overline{AH}</math>, and partition the octagon into 7 triangles by drawing segments <math>\overline{JB}</math>, <math>\overline{JC}</math>, <math>\overline{JD}</math>, <math>\overline{JE}</math>, <math>\overline{JF}</math>, and <math>\overline{JG}</math>. Find the area of the convex polygon whose vertices are the centroids of these 7 triangles. | + | Octagon <math>ABCDEFGH</math> with side lengths <math>AB = CD = EF = GH = 10</math> and <math>BC = DE = FG = HA = 11</math> is formed by removing 6-8-10 triangles from the corners of a <math>23</math> <math>\times</math> <math>27</math> rectangle with side <math>\overline{AH}</math> on a short side of the rectangle, as shown. Let <math>J</math> be the midpoint of <math>\overline{AH}</math>, and partition the octagon into 7 triangles by drawing segments <math>\overline{JB}</math>, <math>\overline{JC}</math>, <math>\overline{JD}</math>, <math>\overline{JE}</math>, <math>\overline{JF}</math>, and <math>\overline{JG}</math>. Find the area of the convex polygon whose vertices are the centroids of these 7 triangles. |
{{AIME box|year=2018|n=II|num-b=8|num-a=10}} | {{AIME box|year=2018|n=II|num-b=8|num-a=10}} | ||
{{MAA Notice}} | {{MAA Notice}} |
Revision as of 07:59, 24 March 2018
Problem
Octagon with side lengths and is formed by removing 6-8-10 triangles from the corners of a rectangle with side on a short side of the rectangle, as shown. Let be the midpoint of , and partition the octagon into 7 triangles by drawing segments , , , , , and . Find the area of the convex polygon whose vertices are the centroids of these 7 triangles.
2018 AIME II (Problems • Answer Key • Resources) | ||
Preceded by Problem 8 |
Followed by Problem 10 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.