Difference between revisions of "2012 AMC 8 Problems/Problem 22"
m (→Solution 2) |
(→Problem) |
||
Line 3: | Line 3: | ||
<math> \textbf{(A)}\hspace{.05in}4\qquad\textbf{(B)}\hspace{.05in}5\qquad\textbf{(C)}\hspace{.05in}6\qquad\textbf{(D)}\hspace{.05in}7\qquad\textbf{(E)}\hspace{.05in}8 </math> | <math> \textbf{(A)}\hspace{.05in}4\qquad\textbf{(B)}\hspace{.05in}5\qquad\textbf{(C)}\hspace{.05in}6\qquad\textbf{(D)}\hspace{.05in}7\qquad\textbf{(E)}\hspace{.05in}8 </math> | ||
− | |||
− | |||
− | |||
− | |||
− | |||
==Solution 1== | ==Solution 1== |
Revision as of 09:43, 27 October 2018
Problem
Let be a set of nine distinct integers. Six of the elements are 2, 3, 4, 6, 9, and 14. What is the number of possible values of the median of ?
Solution 1
First, we find that the minimum value of the median of will be .
We then experiment with sequences of numbers to determine other possible medians.
Median:
Sequence:
Median:
Sequence:
Median:
Sequence:
Median:
Sequence:
Median:
Sequence:
Median:
Sequence:
Median:
Sequence:
Any number greater than also cannot be a median of set .
There are then possible medians of set .
See Also
2012 AMC 8 (Problems • Answer Key • Resources) | ||
Preceded by Problem 21 |
Followed by Problem 23 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AJHSME/AMC 8 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.