Difference between revisions of "2019 AIME II Problems/Problem 1"
Brendanb4321 (talk | contribs) m (→See Also) |
Mathwizard07 (talk | contribs) (→Solution) |
||
Line 27: | Line 27: | ||
- Diagram by Brendanb4321 | - Diagram by Brendanb4321 | ||
+ | Extend <math>AB</math> to form a right triangle with legs <math>6</math> and <math>8</math> such that <math>AD</math> is the hypotenuse and connect the points <math>CD</math> so | ||
+ | that you have a rectangle. The base <math>CD</math> of the rectangle will be <math>9+6+6=21</math>. Now, let <math>E</math> be the intersection of <math>BD</math> and <math>AC</math>. This means that <math>\triangle ABE</math> and <math>\triangle DCE</math> are with ratio <math>\frac{21}{9}=\frac73</math>. Set up a proportion, knowing that the two heights add up to 8. We will let <math>y</math> be the height from <math>E</math> to <math>DC</math>, and <math>x</math> be the height of <math>\triangle ABE</math>. | ||
+ | <cmath>\frac{7}{3}=\frac{y}{x}</cmath> | ||
+ | <cmath>\frac{7}{3}=\frac{8-x}{x}</cmath> | ||
+ | <cmath>7x=24-3x</cmath> | ||
+ | <cmath>10x=24</cmath> | ||
+ | <cmath>x=\frac{12}{5}</cmath> | ||
+ | |||
+ | This means that the area is <math>A=\frac{1}{2}(9)(\frac{12}{5})=\frac{54}{5}</math>. This gets us <math>54+5=\boxed{59}.</math> | ||
==See Also== | ==See Also== | ||
{{AIME box|year=2019|n=II|before=First Problem|num-a=2}} | {{AIME box|year=2019|n=II|before=First Problem|num-a=2}} | ||
{{MAA Notice}} | {{MAA Notice}} |
Revision as of 17:08, 22 March 2019
Problem
Two different points, and , lie on the same side of line so that and are congruent with , , and . The intersection of these two triangular regions has area , where and are relatively prime positive integers. Find .
Solution
- Diagram by Brendanb4321
Extend to form a right triangle with legs and such that is the hypotenuse and connect the points so that you have a rectangle. The base of the rectangle will be . Now, let be the intersection of and . This means that and are with ratio . Set up a proportion, knowing that the two heights add up to 8. We will let be the height from to , and be the height of .
This means that the area is . This gets us
See Also
2019 AIME II (Problems • Answer Key • Resources) | ||
Preceded by First Problem |
Followed by Problem 2 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.