Difference between revisions of "2019 AIME II Problems/Problem 14"
(→Solution) |
m (→Solution) |
||
Line 3: | Line 3: | ||
==Solution== | ==Solution== | ||
− | By the Chicken McNugget theorem, the least possible value of <math>n</math> such that <math>91</math> cents cannot be formed satisfies <math>5n - 5 - n = 91</math>, so <math>n = 24</math>. For values of <math>n</math> greater than <math>24</math>, notice that if <math>91</math> cents cannot be formed, then any number <math>1 \ | + | By the Chicken McNugget theorem, the least possible value of <math>n</math> such that <math>91</math> cents cannot be formed satisfies <math>5n - 5 - n = 91</math>, so <math>n = 24</math>. For values of <math>n</math> greater than <math>24</math>, notice that if <math>91</math> cents cannot be formed, then any number <math>1 \bmod 5</math> less than <math>91</math> also cannot be formed. The proof of this is that if any number <math>1 \bmod 5</math> less than <math>91</math> can be formed, then we could keep adding <math>5</math> cent stamps until we reach <math>91</math> cents. However, since <math>91</math> cents is the greatest postage that cannot be formed, <math>96</math> cents is the first number that is <math>1 \bmod 5</math> that can be formed, so it must be formed without any <math>5</math> cent stamps. There are few <math>(n, n + 1)</math> pairs, where <math>n \geq 24</math>, that can make <math>96</math> cents. These are cases where one of <math>n</math> and <math>n + 1</math> is a factor of <math>96</math>, which are <math>(24, 25), (31, 32), (32, 33), (47, 48), (48, 49), (95, 96)</math>, and <math>(96, 97)</math>. The last two obviously do not work since <math>92</math> through <math>94</math> cents also cannot be formed, and by a little testing, only <math>(24, 25)</math> and <math>(47, 48)</math> satisfy the condition that <math>91</math> cents is the greatest postage that cannot be formed, so <math>n = 24, 47</math>. <math>24 + 47 = \boxed{071}</math>. |
==See Also== | ==See Also== | ||
{{AIME box|year=2019|n=II|num-b=13|num-a=15}} | {{AIME box|year=2019|n=II|num-b=13|num-a=15}} | ||
{{MAA Notice}} | {{MAA Notice}} |
Revision as of 18:31, 22 March 2019
Problem
Find the sum of all positive integers such that, given an unlimited supply of stamps of denominations and cents, cents is the greatest postage that cannot be formed.
Solution
By the Chicken McNugget theorem, the least possible value of such that cents cannot be formed satisfies , so . For values of greater than , notice that if cents cannot be formed, then any number less than also cannot be formed. The proof of this is that if any number less than can be formed, then we could keep adding cent stamps until we reach cents. However, since cents is the greatest postage that cannot be formed, cents is the first number that is that can be formed, so it must be formed without any cent stamps. There are few pairs, where , that can make cents. These are cases where one of and is a factor of , which are , and . The last two obviously do not work since through cents also cannot be formed, and by a little testing, only and satisfy the condition that cents is the greatest postage that cannot be formed, so . .
See Also
2019 AIME II (Problems • Answer Key • Resources) | ||
Preceded by Problem 13 |
Followed by Problem 15 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.