Difference between revisions of "2017 AMC 8 Problems/Problem 3"

(Solution)
(Solution)
Line 7: Line 7:
 
==Solution==
 
==Solution==
  
$\sqrt{16\sqrt{8\sqrt{4}}} = \sqrt{16\sqrt{8\cdot 2}} = \sqrt{16\sqrt{16}} = \sqrt{16\cdot 4} = \sqrt{64} = \boxed{\textbf{(C)}\ 8}.
+
<math>\sqrt{16\sqrt{8\sqrt{4}}}</math> = <math>\sqrt{16\sqrt{8\cdot 2}}</math> = <math>\sqrt{16\sqrt{16}}</math> = <math>\sqrt{16\cdot 4}</math> = <math>\sqrt{64}</math> = <math>\boxed{\textbf{(C)}\ 8}</math>.
  
 
==See Also==
 
==See Also==

Revision as of 11:28, 27 May 2019

Problem 3

What is the value of the expression $\sqrt{16\sqrt{8\sqrt{4}}}$?

$\textbf{(A) }4\qquad\textbf{(B) }4\sqrt{2}\qquad\textbf{(C) }8\qquad\textbf{(D) }8\sqrt{2}\qquad\textbf{(E) }16$

Solution

$\sqrt{16\sqrt{8\sqrt{4}}}$ = $\sqrt{16\sqrt{8\cdot 2}}$ = $\sqrt{16\sqrt{16}}$ = $\sqrt{16\cdot 4}$ = $\sqrt{64}$ = $\boxed{\textbf{(C)}\ 8}$.

See Also

2017 AMC 8 (ProblemsAnswer KeyResources)
Preceded by
Problem 2
Followed by
Problem 4
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AJHSME/AMC 8 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png