Difference between revisions of "2005 AMC 10A Problems/Problem 15"
m (→See==See also) |
m (→Solution 2) |
||
Line 27: | Line 27: | ||
In the expression, we notice that there are 3 <math>3's</math>, 3 <math>2's</math>, and 3 <math>1's</math>. This gives us our first 3 cubes: <math>3^3</math>, <math>2^3</math>, and <math>1^3</math>. | In the expression, we notice that there are 3 <math>3's</math>, 3 <math>2's</math>, and 3 <math>1's</math>. This gives us our first 3 cubes: <math>3^3</math>, <math>2^3</math>, and <math>1^3</math>. | ||
− | However, we can also multiply smaller numbers in the expression to make bigger expressions. For example, <math>(2 | + | However, we can also multiply smaller numbers in the expression to make bigger expressions. For example, <math>(2 \cdot 2) \cdot 4 \cdot 4=4 \cdot 4 \cdot 4 = 4^3</math> (one 2 comes from the <math>3!</math>, and the other from the <math>5!</math>). Using this method, we find: |
− | <math>(3 | + | <math>(3 \cdot 2) \cdot (3 \cdot 2) \cdot 6 = 6^3</math> |
and | and | ||
− | <math>(3 | + | <math>(3 \cdot 4) \cdot (3 \cdot 4) \cdot (2 \cdot 6) = 12^3</math> |
So, we have 6 cubes total:<math>1^3 ,2^3, 3^3, 4^3, 6^3,</math> and <math>12^3</math> for a total of <math>6</math> cubes <math>\Rightarrow \mathrm{(E)}</math> | So, we have 6 cubes total:<math>1^3 ,2^3, 3^3, 4^3, 6^3,</math> and <math>12^3</math> for a total of <math>6</math> cubes <math>\Rightarrow \mathrm{(E)}</math> |
Revision as of 17:25, 27 December 2019
Contents
Problem
How many positive cubes divide ?
Solution 1
Therefore, a perfect cube that divides must be in the form where , , , and are nonnegative multiples of that are less than or equal to , , and , respectively.
So:
( possibilities)
( possibilities)
( possibility)
( possibility)
So the number of perfect cubes that divide is
Solution 2
In the expression, we notice that there are 3 , 3 , and 3 . This gives us our first 3 cubes: , , and .
However, we can also multiply smaller numbers in the expression to make bigger expressions. For example, (one 2 comes from the , and the other from the ). Using this method, we find:
and
So, we have 6 cubes total: and for a total of cubes
See also
2005 AMC 10A (Problems • Answer Key • Resources) | ||
Preceded by Problem 14 |
Followed by Problem 16 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AMC 10 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.